

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 15

SOFTWARE BUG PREDICTION USING MACHINE

LEARNING
1
Dr. K.L.S. Soujanya ,

2
S. Balaji Manikanta Sai ,

3
V. Koushik Yadav ,

4
D. Navaneeth Sai &

5
M. Avinash

1
Professor, Department of Information Technology, CMR College of Engineering &

Technology

2, 3, 4, 5
 B-Tech, Department of Information Technology, CMR College of Engineering &

Abstract:

Software Bug Prediction (SBP) is an important process in software development and

maintenance, which concerns the overall software success. This is because predicting the

software faults in the earlier phase improves the software quality, reliability, and efficiency

and reduces the software cost. However, developing a robust bug prediction model is

challenging, and many techniques have been proposed in the literature. This paper presents a

software bug prediction model based on machine learning (ML) algorithms. Three supervised

ML algorithms have been used to predict future software faults based on historical data.

These classifiers are Naïve Bayes (NB), Decision Tree (DT), and Artificial Neural Networks

(ANNs). The evaluation process showed that ML algorithms can be used effectively with a

high accuracy rate. Furthermore, a comparison measure is applied to compare the proposed

prediction model with other approaches. The collected results showed that the ML approach

has a better performance.

INTRODUCTION:

Problem Statement: Software Bug

Prediction (SBP) is a critical process in

software development and maintenance,

that is concerned with the overall success

of software. This is because predicting

software faults earlier in the development

process improves software quality,

reliability, and efficiency reducing

software costs. However, creating a robust

bug prediction model is a difficult task,

and numerous techniques have been

proposed in the literature. This paper

presents a machine learning (ML)-based

software bug prediction model. Based on

historical data, three supervised ML

algorithms were used to predict future

software faults. These classifiers include

Nave Bayes (NB), Decision Trees (DT),

and Convolutional Neural Networks

(CNN). The evaluation process

demonstrated that ML algorithms can be

used effectively and accurately.

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 16

OBJECTIVES:

• To find the Accuracy of Bug Detection

by using Machine Learning Algorithms.

• Prediction of Bugs occurring before the

development of the Project.

IMPLEMENTATION:

• Several works propose feature

identification techniques. However, few

works attempt to compare features with

one another.

• In their precursor work, Wilde and Scully

propose a technique to identify features by

analysing execution traces of test cases.

• They use two sets of test cases to build

two execution traces: An execution trace

where functionality is exercised; An

execution trace where the functionality is

not.

• Then, they compare execution traces to

identify the feature associated with the

functionality in the program.

• In their work, the authors only use

dynamic data to identify features, no static

analysis of the program is performed. In

their work, the authors only use dynamic

data to identify features, no static analysis

of the program is performed.

Table 1: Feature Identification

• This approach decomposes into a process

and a set of tools to support the process.

• The process makes use of processor

emulation, knowledge filtering,

probabilistic ranking, and model

transformations to support the analysis of

large multi-threaded object-oriented

programs and to deal with imprecision and

noise.

• They use data collected from the

realization of functionality, under different

scenarios, to filter static data modeled as

class diagrams, thus relating classes with

features and with scenarios, and

highlighting differences among features.

• Maintainers can use this approach to

build and compare micro-architectures to

precisely locate responsibilities and feature

differences.

PROPOSED SYSTEM :

Objective of Proposed Model:

The proposed system is a software bug

prediction model based on machine

learning algorithms. It uses historical data

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 17

to predict future software faults to improve

software quality, reliability, and efficiency,

and reduce software costs. The system

uses three supervised machine learning

classifiers: Naïve Bayes, Decision Tree,

Random Forest, and Convolutional Neural

Networks. The evaluation process of the

system showed high accuracy rates and

effectiveness in predicting software faults.

Additionally, a comparison measure was

applied to compare the proposed

prediction model with other approaches,

and the results showed that the machine

learning approach outperformed other

methods. Overall, the proposed system is a

robust and effective way to predict

software bugs and improve the software

development and maintenance process. It

can be used by software developers and

maintenance teams to enhance the quality,

reliability, and efficiency of software

systems while reducing costs.

The proposed system of software bug

prediction based on machine learning

algorithms has several advantages,

including:

➢ Improved software quality: By

predicting software bugs in advance, the

proposed system can help software

developers to identify and fix the issues

before the software is deployed. This can

lead to a higher quality software product

that meets user requirements and

expectations.

➢ Cost savings: Identifying and fixing

software bugs can be time-consuming and

expensive. By predicting bugs and

addressing them early in the development

process, the proposed system can help

reduce the overall cost of software

development and maintenance.

➢ Faster development: With the help of

the proposed system, software developers

can identify and fix bugs earlier in the

development cycle, which can help

accelerate the development process and

reduce time to market.

➢ Scalability: The proposed system is

based on machine learning algorithms,

which can learn and improve over time as

more data becomes available. This means

that the system can be scaled up to handle

larger and more complex software

projects. Overall, the proposed system

offers a range of advantages that can help

software development teams to improve

their software quality, reliability, and

efficiency while reducing costs and time to

market.

RESULTS:

Comparison of Existing Solutions: There

are many studies about software bug

prediction using machine learning

techniques. For example, the study in [2]

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 18

proposed a linear Auto-Regression (AR)

approach to predict faulty modules. The

study predicts the software’s future faults

depending on the historical data of the

software’s accumulated faults. The study

also evaluated and compared the AR

model with the Known power model

(POWM) using Root Mean Square Error

(RMSE) measure. In addition, the study

used three datasets for evaluation and the

results were promising. The studies in [1],

and [2] analyzed the applicability of

various ML methods for fault prediction.

The most important previous research

about each ML technique and the current

trends in software bug prediction using

machine learning. This study can be used

as ground or step to prepare for future

work in software bug prediction. Malhotra

Ruchika in [9] presented a good systematic

review of software bug prediction

techniques, using Machine Learning (ML).

The paper included a review of all the

studies between the period 1991 and 2013,

analyzed the ML techniques for software

bug prediction models, assessed their

performance, compared ML and statistic

techniques, compared different ML

techniques, and summarized the strength

and weaknesses of the ML techniques. In

[10], the paper provided a benchmark to

allow for common and useful comparisons

between different bug prediction

approaches. The study presented a

comprehensive comparison between a

well-known bug prediction approach, also

introduced a new approach, and evaluated

its performance by building a good

comparison with other approaches using

the presented benchmark. The study in [9]

assessed various object-oriented metrics by

used machine learning techniques

(decision tree and neural networks) and

statistical techniques (logical and linear

regression). The results of the study

showed that the Coupling Between Object

(CBO) metric is the best metric to predict

the bugs in the class and the Line of Code

(LOC) is fairly well, but the Depth of

Inheritance Tree (DIT) and Number of

Children (NOC) are untrusted metrics.

Singh and Chug [9] discussed five popular

ML algorithms used for software defect

prediction i.e, Artificial Neural Networks

(ANNs), Particle Swarm Optimization

(PSO), Decision Tree (DT), Naïve Bayes

(NB) and Linear Classifiers (LC). The

study presented important results including

that the ANN has lowest error rate

followed by DT, but the linear classifier is

better than other algorithms in term of

defect prediction accuracy, the most

popular methods used in software defect

prediction are: DT, BL, ANN, SVM, RBL

and EA, and the common metrics used in

software defect prediction studies are: Line

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 19

Of Code (LOC) metrics, object oriented

metrics such as cohesion, coupling and

inheritance, also other metrics called

hybrid metrics which used both object

oriented and procedural metrics,

furthermore the results showed that most

software defect prediction studied used

NASA dataset and PROMISE dataset.

Moreover, the studies in [08], [9]

discussed various ML techniques and

provided the ML capabilities in software

defect prediction. The studies assisted the

developer to use useful software metrics

and suitable data mining technique in order

to enhance the software quality. The study

in determined the most effective metrics

which are useful in defect prediction such

as Response for class (ROC), Line of code

(LOC) and Lack of Coding Quality

(LOCQ). Bavisi et al. presented the most

popular data mining technique (k-Nearest

Neighbors, Naïve Bayes, C4.5 and

Decision trees). The study analyzed and

compared four algorithms and discussed

the advantages and disadvantages of each

algorithm. The results of the study showed

that there were different factors affecting

the accuracy of each technique; such as the

nature of the problem, the used dataset and

its performance matrix

Fig: 2. UI of our Project

• The UI of the project is designed in such

a way that it’s user-friendly and all the

functionalities are labeled to perform

various operations over a Software project.

Fig: 3. Evaluation of Dataset based on

different attributes

• For the Evaluation process of the dataset

we need to consider few attributes that

which are provided in the Dataset and it

will show us the evaluation of those

selected attributes in a dataset in the form

pf Bar-Graphs.

CONCLUSION

To locate a bug, developers use not only

the content of the bug report but also

domain knowledge relevant to the software

project. We introduced a learning-to-rank

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 20

approach that emulates the bug-finding

process employed by developers. The

ranking model characterizes useful

relationships between a bug report and

source code files by leveraging domain

knowledge, such as API specifications, the

syntactic structure of code, or issue

tracking data. Experimental evaluations on

six Java projects show that our approach

can locate the relevant files within the top

10 recommendations for over 70 percent of

the bug reports in Eclipse Platform and

Tomcat. Furthermore, the proposed

ranking model outperforms three recent

state-of-the-art approaches. Feature

evaluation experiments employing greedy

backward feature elimination demonstrate

that all features are useful. When coupled

with runtime analysis, the feature

evaluation results can be utilized to select

a subset of features to achieve a target

trade-off between system accuracy and

runtime complexity.

FUTURE ENHANCEMENT

 In future work, we will leverage

additional types of domain knowledge,

such as the stack traces submitted with bug

reports and the file change history, as well

as features previously used in defect

prediction systems. We also plan to use the

ranking SVM with nonlinear kernels and

further evaluate the approach on projects

in other programming languages

REFERENCES:

[1] G. Antoniol and Y.-G. Gueheneuc,

“Feature identification: A novel approach

and a case study,” in Proc. 21st IEEE Int.

Conf. Softw. Maintenance, Washington,

DC, USA, 2005, pp. 357–366.

[2] A. Sheta and D. Rine, “Modeling

Incremental Faults of Software Testing

Process Using AR Models”, the

Proceeding of 4th International Multi

Conferences on Computer Science and

Information Technology (CSIT 2006),

Amman, Jordan. Vol. 3. 2006.0

[3] A. Bacchelli and C. Bird,

“Expectations, outcomes, and challenges

of modern code review,” in Proc. Int.

Conf. Softw. Eng., Piscataway, NJ, USA,

2013, pp. 712–721.

[4] J. Zhou, H. Zhang, and D. Lo, “Where

should the bugs be fixed? - more accurate

information retrieval-based bug

localization based on bug reports,” in Proc.

Int. Conf. Softw. Eng., Piscataway, NJ,

USA, 2012 pp. 14–24.

[5] R. M. Bell, T. J. Ostrand, and E. J.

Weyuker, “Looking for bugs in all the right

places,” in Proc. Int. Symp. Softw. Testing

Anal., New York, NY, USA, 2006, pp. 61–

72.

[6] D. Sharma and P. Chandra, "Software

Fault Prediction Using Machine Learning

Techniques," Smart Computing and

Volume 07, Issue 03, Jul 2023 ISSN 2581 – 4575 Page 21

Informatics. Springer, Singapore, 2018.

541-549.

[7] T. J. Biggerstaff, B. G. Mitbander, and

D. Webster, “The concept assignment

problem in program understanding,” in

Proc. 15th Int. Conf. Softw. Eng., Los

Alamitos, CA, USA, 1993, pp. 482–498.

[8] D. Binkley and D. Lawrie, “Learning

to rank improves IR in SE,” in Proc. IEEE

Int. Conf. Softw. Maintenance Evol.,

Washington, DC, USA, 2014, pp. 441–

445.

[9] Malhotra, Ruchika. "A systematic

review of machine learning techniques for

software fault prediction." Applied Soft

Computing 27 (2015): 504-518.

[10] D'Ambros, Marco, Michele Lanza,

and Romain Robbes. "An extensive

comparison of bug prediction approaches."

Mining Software Repositories (MSR),

2010 7th IEEE Working Conference on.

IEEE, 2010.

[11] Reddy, b. V. R., dasari, n., &

venkateswararao, k. (2021). A

steganography system with gausian

markov random fields and error detection

codes.

[12] Soujanya, K. (2018). Ontology based

variability management for dynamic

reconfiguration of software product

lines. Journal of Advanced Research in

Dynamical and Control Systems, 9(18),

2361-2375.

[13] Soujanya, K. L. S., & AnandaRao, A.

(2016). A generic framework for

configuration management of spl and

controlling evolution of complex software

products. ACM SIGSOFT Software

Engineering Notes, 41(1), 1-10.

[14] Kommanaboyina, L. S., & Akepogu,

A. R. (2016). Change Propagation in

Software Product Lines Using ACP

Algorithm. In Transactions on Engineering

Technologies: International

MultiConference of Engineers and

Computer Scientists 2015 (pp. 95-108).

Springer Singapore.

[15] Vinay, R., K. L. S. Soujanya, and P.

Singh. "Disease prediction by using deep

learning based on patient treatment

history." Int. J. Recent Technol. Eng 7.6

(2019): 745-754.

[16] Latha, C. M., Bhuvaneswari, S., &

Soujanya, K. L. S. (2022, November).

Stock Price Prediction using HFTSF

Algorithm. In 2022 Sixth International

Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud)(I-

SMAC) (pp. 1053-1059). IEEE.

