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INTRODUCTION 

Using distributed representations of words, sentences, 

paragraphs, and documents (such as doc2vec) has 

been critical in unlocking the potential of neural 

networks for natural language processing (NLP) tasks  

An object's low-dimensional vector representation, 

known as an embedding, may be learned using 

techniques for learning distributed representation. 

Because the meaning' of an element is spread out 

over several vector components in these vectors, 

things with semantically comparable meanings are 

translated to nearby vectors. 

 

 

 

 

Fig. 1. A code snippet and its predicted labels as computed by our 

model. 

Purpose: The goal of this study is to learn code 

embeddings, continuous vectors for expressing 

snippets of code. By learning code embeddings, our 

long-term objective is to allow the application of 

neural approaches to a broad variety of 

programming-language problems. In this study, we 

employ the motivating aim of semantic labelling of 

code fragments. Motivating task: semantic labelling 

of code fragments. Consider the procedure in Figure 

1. The procedure comprises just low-level 

assignments to arrays, yet a person reading the code 

may (correctly) describe it as doing the opposite 

action. Our objective is to forecast such labels 

automatically. The right-hand side of Figure 1 

displays the labels predicted automatically using our 

technique. The most probable guess (77.34 percent ) 

is reverseArray. Section 6 includes other instances. 

This challenge is complex since it needs learning a 

relationship between the complete content of a 

technique and a semantic label. That is, it involves 

aggregating maybe hundreds of phrases and 

assertions from the method body into a single, 

descriptive name. Our approach. We provide an 

unique approach for predicting programme attributes 

using neural networks. Our fundamental contribution 

is a neural network that learns code embeddings Ð 

continuous distributed vector representations for 

code. The code embeddings provide us a natural and 

efficient way to represent relationships between code 

snippets and labels. Because of the organised nature 

of source code, our neural network design can learn 

to combine several syntactic pathways into a single 

vector. As in NLP, word embeddings are important to 

the use of deep learning for NLP tasks, and this 

capacity is crucial to the application of deep learning 

in programming languages. It is necessary to provide 

the model with an appropriate tag, caption or name 

for the code snippet. Using this label, we specify the 

semantic attribute we want the network to represent, 

for example, a tag applied to the snippet, or the name 

of the method, class or project from whence the 

sample was extracted. The code fragment is C, and 

the label or tag is L. It is our primary assumption that 

the distribution of labels may be derived from C's 

syntactic routes. That is why the label distribution P 

(L|C) is part of our model's learning process. For the 

goal of guessing the name of a technique based on its 

body, we show the usefulness of our methodology. 

This is an essential issue since clear method names 
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make it simpler to write and maintain software. 

Choosing a method's name carefully allows you to 

communicate the method's primary goal in a concise 

and memorable way. Ideally, "you don't need to look 

at the body if you have a suitable method name." A 

few years later [Fowler and Beck 1999]. Choosing 

the right names for public API methods is extremely 

important, since bad method names may condemn a 

project to obscurity. It has been reported [Allamanis 

et al, 2015a; Hùst, 2009]; [Allamanis et al, 2015b; 

Hùst, 2009]. Semantic equivalence between names is 

captured. Learning code vectors requires the 

acquisition of a vocabulary of vectors for the labels. 

To forecast method names using our approach, 

method-name vectors reveal unexpectedly close 

semantic and parallels. 

vector(equals)+vector(toLowCase) produces a vector 

that is very similar to vector(equals) 

(equalsIgnoreCase). 

Table 1. Semantic similarities between method 

names. 

 

 

A well-known NLP analogy is that the model learns 

analogies that are relevant to source code, such as: 

receive is to transmit as download is to upload 

[Mikolov and colleagues 2013c]. There are more 

instances in Table 1, and a more in-depth explanation 

may be found in Section 6.4. 

Applications 

It's possible to use machine learning methods by 

embedding code snippets as vectors, since machine 

learning techniques often use vectors as inputs. The 

following direct applications are examined in this 

paper:Automatic code review suggests better method 

names when the name supplied by the developer does 

not correspond to method functionality. To avoid 

naming issues, increase readability and maintenance 

of code, and promote the usage of public APIs, better 

method names are needed. Allamanis et al. 2015a; 

Fowler and Beck 1999; Hùst and stvold 2009] have 

already demonstrated that this application is of major 

value. Semantic similarities allow search in "the issue 

domain" rather than "the solution domain" for 

retrieval and API discovery. It is common for 

developers to search for a serialise function when the 

corresponding method of the class is called toJson 

since serialisation is done through json. Finding 

toJson is easy with the use of a computer algorithm 

that scans all of the techniques for the one that is 

most close to the required name (Table 1). Without 

our method, it's impossible to detect semantic 

similarities like this. Our vectors may also be used by 

an automated tool to tell if someone is using equals 

right after toLowerCase and propose that they switch 

to equalsIgnoreCase in its place (Table 6). To help 

with activities like code retrieval, captioning, 

categorization, and tagging, or as a measure for 

comparing the similarity of code snippets in order to 

aid in ranking and clone detection, we generate 

vectors of code. As a result of our method's unique 

ability to generate a unique vector for each and every 

line in a snippet of code, comparable lines of code 

may be given similar vectors. Machine learning 

algorithms may be used in a wide range of contexts 

thanks to this capacity. For our assessment 

benchmark, we chose the tough job of method name 

prediction, which has previously shown 

disappointing results [Allamanis et al. 2015a, 2016; 

Alon et al. 2018]. Predicting whether a programme 

does or does not conduct I/O, discovering its 

dependencies, and determining whether it is 

suspected of being a malicious software are all 

activities that are necessary for success in this 

assignment. We demonstrate that our method 

significantly outperforms the findings of prior studies 

on this difficult benchmark. 

Challenges: Representation and Attention 

Giving a name to a method (or assigning a semantic 

label to it) is an example of an issue that calls for a 

concise way to describe the meaning of the code in 

question. When it comes to code snippets, the 

challenge is how to encode them in such a manner 

that they may be reused across different applications 

and used to anticipate attributes such as their labels. 

Two issues arise as a result of this: Incorporating an 

example from one software into another in order to 

make it easier to understand. It's important to 

discover which components of the representation are 

significant to predicting the desired feature, and the 

order in which they are important. Representation. 

Text is often treated as a linear series of tokens by 

NLP techniques. There are a number of current 

techniques that treat source code as a token stream 

[Allamanis et al. 2014, 2016; Allamanis and Sutton 

2013; Hindle et al. 2012; Movshovitz-Attias and 

Cohen 2013; White et al. 2015]. In contrast to this, 

programming languages may considerably benefit 

from representations that use the organised character 
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of their grammar [Alon et al. 2018; Bielik et al. 2016; 

Raychev et al. 2015]. A trade-off exists between the 

amount of analysis necessary to extract the 

representation and the amount of learning effort 

required to use it. ' In many cases, learning about a 

programme just reading the program's surface 

language requires a substantial amount of time and 

effort. So much data is needed for this learning 

endeavour because the learning model must re-learn 

programming syntax and semantics from the input. 

However, if the representation is extracted by a 

thorough study of the programme code, the learnt 

model may become language-specific (and even task-

specific). For our representation, we follow prior 

research [Alon et al. 2018; Raychev et al. 2015] by 

using paths in the program's abstract syntax tree 

(AST). The regularities that reflect frequent coding 

patterns may be captured by describing a sample of 

code using its syntactic pathways. For vast volumes 

of code and a broad variety of issues, we show that 

this approach greatly reduces the learning effort 

(relative to learning from programme text). A code 

snippet is represented by a collection of its extracted 

pathways, which we call a bag. The difficulties 

Attention. To put it another way, the issue is that you 

need to figure out how to connect a bag to a 

computer.with a label and a set of path contexts. 

Even comparable procedures will not have the exact 

same bag of path-contexts if they represent each one 

monolithically. As a result, we require a 

compositional technique that can aggregate a bag of 

route contexts such that bags that generate the same 

label are mapped to nearby vectors. Compositional 

mechanisms of this kind might generalise and 

describe previously unknown bags by exploiting 

previously learned path-contexts and their constituent 

components (paths, values, etc.). A new neural 

attention network design is used to tackle this 

problem. Attention models have lately attracted a lot 

of attention, particularly in the fields of neural 

machine translation (NMT), reading comprehension, 

voice recognition, and computer vision. Neural 

mechanisms learn how much attention to pay to each 

item in a bag of path-contexts (the attention"). Each 

each path-context is aggregated into a single vector 

that contains all the information about the whole code 

snippet. This may be shown in Section 6.4, where we 

explain how the weights assigned by our attention 

mechanism can be represented to comprehend the 

relative relevance of each path-context in a 

prediction. Both the atomic representations of 

pathways and the capacity to assemble many contexts 

into a single code vector are optimised concurrently 

while learning both the attention mechanism and the 

embeddings. Disciplined and unguided focus By Xu 

et al. [2015], soft and hard attention were used to 

describe the work of creating picture captions. While 

hard attention refers to selecting one path-context to 

concentrate on, soft attention indicates that all path-

contexts are weighted equally in our context. The 

enhanced outcomes may be attributed to the usage of 

soft focus on syntactic routes. It is shown that our 

approach is more efficient for modelling code when 

compared to an analogous model based on hard 

focus. 

 

Existing Techniques 

Recent years have seen a lot of attention and 

development in the challenge of predicting 

programme attributes by learning from huge code 

[Allamanis et al. 2014; Allamanis and Sutton 2013; 

Bielik et al. 2016; Hindle et al. 2012; Raychev et al. 

2016a]. For a variety of applications, it is essential to 

be able to predict semantic properties of a 

programme without running it and with minimal or 

no semantic analysis: predicting names for 

programme entities [Allamanis et al. 2015a; Alon et 

al. 2018; Raychev et al. 2015], code completion 

[Mishne et al. 2012; Raychev et al. 2014], code 

summarization [Allamanis et al. 2016], code 

generation [Amod (see [Allamanis et al. 2017; 

Vechev and Yahav 2016] for a survey). 

Contributions 

It uses a path-based attention model for vector 

learning in arbitrary-sized chunks of code. Using this 

technique, we may feed a programme, which is a 

discrete object, into a deep learning pipeline for a 

variety of tasks. 

As a benchmark for our methodology, we conduct a 

quantitative assessment for predicting the names of 

cross-project methods, trained on more than 12 

million methods of real-world data, and compared to 

earlier research. • This new technique outperforms 

prior efforts that employed LSTMs, CNNs, and CRF-

based networks.For example, a qualitative assessment 

based on how much attention the model has learnt to 

pay to the diverse path circumstances while 

generating predictionsMethod name embeddings, 

which commonly assign similar names to comparable 

vectors, and even make it easy to calculate analogies 

using basic vector arithmetic, are included.A 

comparison of our model to prior non-neural efforts, 

such as Alon et al. [2018] and Raychev et al. [2015], 
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to highlight the major benefits in terms of 

generalisation and spatial complexity of our model. 

OVERVIEW  

It's in this part that we show how our model is able to 

identify tiny changes between comparable pieces of 

code. A prediction may be made about each snippet 

even if it has not been seen in its whole in the 

training data because of the vectors. In order to 

generate a single code snippet, we employ an 

attention method to learn the weighted average of the 

route vectors and extract syntactic pathways from the 

snippet. These path vectors are then represented as a 

bag of distributed vector representations. As a final 

benefit, this code vector may be used to make 

educated guesses about the snippet's name. 

 

Figure 2 shows three strategies that, despite their similar 

syntactic form, may be clearly identified by our model: Our 

approach accurately predicts meaningful names by capturing the 

minor distinctions between them. Each technique depicts the 

model's top four most important routes. Colored pathways' 

widths are proportionate to the amount of attention they received. 

Motivating Example  

We show how to learn code vectors for method 

bodies and predict the method name given the body 

using our technique since method names are often 

descriptive and accurate labels for code snippets. The 

same method may be used to apply to any code 

fragment that contains a label. The three Java 

methods shown in Figure 2 are good examples. In 

terms of syntax, these methods all contain a single 

argument named target, (ii) iterate through a field 

called elements, and (iii) have an if condition within 

the loop body. They all follow a similar pattern: As 

can be seen in Figures 2a and 2b, the former returns 

true if elements include target and the latter returns 

false if it does not; Figure 2b returns the element 

from elements whose hashCode matches target, while 

Figure 2c provides the index of target inside 

elements. Despite their overlapping qualities, our 

model is able to accurately predict the descriptive 

method names: contains, get, and indexOf, all of 

which have a distinct meaning. Extraction of a route. 

An AST is constructed for each query method in the 

training corpus. Syntactic analysis is then carried out 

by traversing the ASTPaths between the AST leaves 

are extracted. Paths are shown as a series of AST 

nodes connected by arrows pointing up or down in 

the tree, respectively. We refer to this tuple as a path-

context since it contains the values of the AST leaves 

to which it is connected. Section 3 clearly defines 

these concepts. Using the AST of the technique in 

Figure 2a, Figure 3 shows the top four path contexts 

that were given the greatest attention by the model 

during this prediction, with the width of each route 

corresponding to the attention it received from the 

AST. Contexts are represented in a distributed 

manner. It is mapped to the real-valued vector 

representation, or embedding, of each of the route 

and leaf values of a path-context. For each path-

context, a single vector is concatenated from the three 

contexts. It is possible to learn the embedding values 

as well as other network parameters during training. 

A network of paths and attention. An entire method's 

path-context embeddings are combined into one 

vector by the Path-Attention network. It's the 

attention mechanism that learns to score each path-

context, such that the more the attention, the better 

the score.

 

 

Figure 3 shows the model's top-four attended pathways from 

Figure 2a on the AST of the same sample. In each hue, the 

amount of attention it receives is reflected in the path's width 

(red 1: 0.23, blue 2: 0.14, green 3: 0.09, orange 4: 0.07). 

The attention ratings are used to combine these many 

embeddings into a single code vector. The network 

then estimates the likelihood of each target method 

name given the code vector. Section 4 explains the 

network's structure. Interpretation of the path of 

travel. The attention scores that each path-context 

received from the network may be seen, 

notwithstanding the difficulty of interpreting 

particular values of vector components in neural 

networks. Figures 2 and 3 show snippets of code that 

indicate the top four route contexts in each case, as 

determined by the model. Depending on how much 

attention these path-contexts get, the pathways' 

widths vary. As a result of training on millions of 

samples, the model has learnt how much weight to 
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assign each feasible route. For example, in Figure 3, 

the red 1 path-context, which runs from the field 

items to the return value true, was given the most 

attention. In contrast, less attention was paid to the 

blue 2 path-context, which extends from the 

argument target to the return value false. Think about 

the red 1 path-context shown in Figure 2a and Figure 

3a. It's explained in Section 3 as: (elements, 

Name'FieldAccess'Foreach'Block'IfSmt'Block'Return'

BooleanExpress'true') It is clear that this single route 

contains the method's core functionality, since it 

iterates over a field named elements and verifies an if 

condition for each value; if the condition is true, the 

method returns true. It is easy to see why this route 

was given the most attention by the model since we 

employ "soft attention," which takes into 

consideration other pathways such as those that 

explain the "if condition" itself." In addition, the 

model's top-five recommendations for each approach 

are shown in Figure 2. It is clear from the samples 

that the top proposals are highly similar to each other, 

and all of them are descriptive of the process. For 

example, a method named matches is likely to 

include an if condition within a for loop and to return 

true if a condition is true, as shown in Figure 2a's top-

5 choices (contains and containsExact are two of the 

most correct ones). Figure 2a's orange 4 path-context, 

which runs from Object to target, received less 

attention than other path-contexts in the same 

procedure but more attention than the orange 4 path-

context in Figure 2c. Although attention is not 

constant, it is provided to the various path-contexts in 

the code. Comparative study of n-gram structures. 

Figure 2a displays the four path-contexts that 

received the greatest attention during the prediction 

of the method name. The orange 4 path-context, for 

example, connects the tokens "object" and "target" in 

a chain. This may give the idea that a bag-of-bigrams 

representation of this approach may be as expressive 

as a syntactic route representation. While the AST 

node of type Parameter differentiates it from, for 

example, a local variable declaration of the same 

name and type, the orange 4 path does not. An object 

model uses the same representation regardless of 

whether an object is sent as a method argument or 

stored locally. Using a syntactic representation of a 

code sample, the model can discriminate between 

two snippets of code that other models cannot. The 

model may take advantage of small changes across 

snippets to provide a more precise prediction by 

combining all contexts with attention. The essentials. 

Highlights of our methodology may be seen in the 

examples provided. • A collection of path-contexts 

may be used to represent a code snippet. • Making an 

accurate forecast requires more than just one context. 

To create a forecast, an attention-based neural 

network takes into account different route contexts. 

While code samples with identical syntactic structure 

contain many of the same n-grams, our model can 

quickly discern subtle variations across code 

snippets. This model may be used to forecast method 

names across large datasets and projects. In spite of 

its neural network foundation, our model is human-

interpretable and generates intriguing insights. 

CONCLUSION  

New attention-based neural networks for encoding 

arbitrary-sized code chunks using fixed-length 

continuous vectors were described. Using a soft-

attention method, the snippet's Abstract Syntax Tree 

(AST) vector representations are aggregated to form 

a single vector representation. Predicting method 

names using a model trained on over 12 million 

methods was one way we showed off our technique. 

With our model, we are able to forecast file names 

across many projects, which is a huge improvement 

over prior methods. We hypothesise that our model's 

simplicity and dispersed nature allow it to be 

generalised. The prediction findings are 

understandable and engaging because of the attention 

mechanism. As a foundation for a broad variety of 

programming language processing activities, we 

think the attention-based approach that leverages a 

structural representation of code may be used. All of 

our code and our trained model may be found on 

https://github.com/tech-srl/code2vec for this reason. 
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