
Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 76

VEHICARE CLOUD APPOINTMENT

1,2,3,4 Siddhartha Vallapoju, Revoju Charan, Minnikanti Jai Sriharsha Vardhan, Siripuram

Prudhvinath,5V. Anil Kumar

1,2,3,4 Ug scholars, MallaReddy college Of Engineering , Hyderabad - 500100
5 Assistant Professor, MallaReddy college Of Engineering , Hyderabad - 500100

ABSTRACT

High-speed networks and ubiquitous Internet

access become available to users for access

anywhere at any time. Cloud computing is a

concept that treats the resources on the

Internet as a unified entity, a cloud.

This paper presents the development of an

intelligent chatbot system utilizing AWS Lex

for efficient appointment scheduling in the

context of Vehicle Servicing. The proposed

system aims to streamline the appointment

booking process by engaging users in a

natural language conversation, collecting

necessary details, and seamlessly integrating

with backend systems to confirm and

schedule appointments.

The system further enhances user experience

by sending acknowledgments through SMS or

email, providing real-time updates and

confirmation to both users and the service

provider.

CHAPTER - 1

INTRODUCTION

1.1 INTRODUCTION

In an era of increasing automation and digital

transformation, our project is dedicated to

revolutionizing the vehicle servicing experience.

Our objective is to introduce an innovative

solution by leveraging the power of AWS LEX

chat bot technology, which will seamlessly

facilitate and automate the booking of vehicle

servicing appointments. This project not only

aims to enhance user convenience but also

optimize operational efficiency within the

automotive service industry."

1.2 OBJECTIVE

The objectives of a Vehicle Service Appointment

Booking System typically revolve around

improving service efficiency, customer

experience, and operational management within

a service centre.

1.3 METHODOLOGY ADOPTED

The methodology adopted for developing a

Vehicle Service Appointment Booking System

could depend on various factors such as team

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 77

expertise, project scope, timelines, and specific

requirements. However, a common methodology

might include:

Agile Methodology

CHAPTER - 2

 LITERATURE SURVEY

2.1 LITERATURE SURVEY

Literature survey 1: -

Title: - "Bot-Based Cloud Management:

Challenges and Opportunities"

Year: -2019

Authors: - M. Rehman, et al.

Abstract: - This paper discusses the use of

chatbots and conversational agents for cloud

management, addressing challenges and

opportunities in automating cloud-related

tasks and support.

Literature survey 2: -

Title: - "CloudBot: An Intelligent Cloud

Management Chatbot"

Year: - 2018

Authors: - P. Halder, et al.

Abstract: - This research paper presents

CloudBot, an intelligent chatbot designed for

cloud management tasks and demonstrates its

effectiveness.

 CHAPTER - 3

 SYSTEM ANALYSIS

3.1 EXISTING SYSTEM

phone calls:

Many vehicle servicing centers still rely on

traditional phone calls for appointment

booking.

Online Booking Portals:

Some servicing centers offer online booking

portals on their websites. Customers can book

their appointment through online

Service Center Management Software:

Internally, servicing centers may use

management software that includes

appointment scheduling features.

3.2 DRAWBACKS

Limited availability:

Phone-based booking systems and in-person

scheduling may have limited availability

during certain hours, leading to potential

delays and inconvenience for customer.

Human errors:

Manual booking systems, whether over the

phone or in person, can be prone to human

errors such as incorrect appointment times,

service etc.

3.3 PROPOSED SYSTEM

The proposed system of project, which

involves building an AWS Lex chatbot to

automate vehicle servicing appointment

bookings for customers and service providers

SYSTEM OVERVIEW:

Chatbot Interface: The system will feature an

intuitive and user-friendly chatbot interface

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 78

that can be accessed through various

channels, such as a website, mobile app, or

messaging platform

 CHAPTER - 4

 SYSTEM DESIGN

4.1 SYSTEM ARCHITECTURE

4.2 MODULES

1. User Interface Module

2. Backend Integration Module

1.User Interface Module:

- Develop the chatbot's user interface,

enabling users to interact naturally.

- Implement a text or voice-based

interface that understands user

requests.

- Utilize Amazon Lex and Amazon

Polly for natural language processing

and speech

 synthesis.

 2. Backend Integration Module:

- Establish connections with the

backend systems of vehicle service providers.

4.3 UML DIAGRAMS

DATA FLOW DIAGRAM:

SEQUENCE DIAGRAM:

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 79

USE CASE DIAGRAM

CHAPTER - 5

SYSTEM IMPLEMENTATION

5.1 CLOUD COMPUTING:

Cloud computing is a technology that enables

access to a shared pool of computing

resources over the internet. Instead of owning

physical hardware or running software on a

local server, users can access applications,

storage, and processing power hosted by a

third-party provider.

Here are some key components and concepts:

Models of Cloud Computing:

1. Infrastructure as a Service (IaaS):

Provides virtualized computing

resources over the internet. Users can

rent virtual machines, storage, and

networking resources on a pay-as-you-

go basis.

5.2 SOURCE CODE

6.LAMBDA CODE FOR

DATABASE:

 python

import boto3

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 80

def lambda_handler(event,

context):

 # Extract relevant

information from the Lex

event

 user_id = event['userId']

 input_text =

event['inputTranscript']

 # Connect to DynamoDB

 dynamodb =

boto3.resource('dynamodb')

 table =

dynamodb.Table('YourDyna

moDBTableName')

 # Perform some

DynamoDB operation (e.g.,

put item)

 response =

table.put_item(

 Item={

 'UserId': user_id,

 'InputText':

input_text

 }

)

 # You can customize the

response based on the

DynamoDB operation result

 if

response['ResponseMetadat

a']['HTTPStatusCode'] ==

200:

 return {

 'dialogAction': {

 'type': 'Close',

 'fulfillmentState':

'Fulfilled',

 'message': {

 'contentType':

'PlainText',

 'content': 'Your

DynamoDB operation was

successful.'

 }

 }

 }

 else:

 return {

 'dialogAction': {

 'type': 'Close',

 'fulfillmentState':

'Failed',

 'message': {

 'contentType':

'PlainText',

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 81

 'content': 'There

was an issue with the

DynamoDB operation.'

 }

 }

 }

 CHAPTER - 6

 TESTING

1.1 TEST THE BOT

To build the VEHICARE bot,

choose Build.

Amazon Lex builds a machine

learning model for the bot. When you

test the bot, the console uses the

runtime API to send the user input

back to Amazon Lex. Amazon Lex

then uses the machine learning model

to interpret the user input.

It can take some time to complete the

build.

6.2 TESTING

The various levels of testing are

6.2.1 White Box Testing

6.2.2 Black Box Testing

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 82

6.2.1 White Box Testing

White-box testing (also known

as clear box testing, glass box

testing, transparent box testing,

and structural testing) is a method of

testing software that tests internal

structures or workings of an

application, as opposed to its

functionality (i.e. black-box testing).

In white-box testing an internal

perspective of the system, as well as

programming skills, are used to design

test cases. The tester chooses inputs to

exercise paths through the code and

determine the appropriate outputs.

This is analogous to testing nodes in a

circuit, e.g. in-circuit testing (ICT).

6.2.2 Black Box Testing

Black-box testing is a method

of software testing that examines the

functionality of an application (e.g.

what the software does) without

peering into its internal structures or

workings (see white-box testing). This

method of test can be applied to

virtually every level of software

testing: unit, integration,

system and acceptance. It typically

comprises most if not all higher-level

testing, but can also dominate unit

testing as well

Test procedures

CHAPTER - 7

RESULTS

7.1 SCREENSHOTS

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 83

CHAPTER - 8

CONCLUSION

8.1 CONCLUSION

The development and implementation of the

Vehicle Service Appointment Booking

System have significantly transformed the

way customers engage with our service

center. By providing a streamlined and user-

friendly platform for scheduling vehicle

maintenance, the system has enhanced

customer satisfaction and operational

efficiency.

Key Achievements:

• Improved User Experience: The system

offers a convenient and intuitive

interface, allowing customers to

effortlessly book appointments, select

services, and receive timely reminders.

CHAPTER - 9

FUTURE ENHANCEMENTS

9.1 FUTURE ENHANCEMENTS

• AI Integration: While you mentioned

your current system isn't AI-powered,

integrating AI could offer features like

predictive maintenance scheduling based

on vehicle usage patterns or suggesting

optimal service packages based on

vehicle history.

• Mobile App Development: Creating a

dedicated mobile app for the service

center could enhance user experience,

allowing convenient booking, real-time

notifications, and service tracking.

REFERENCES

1. AWS Documentations

2.Amanpreet Kaur sandhu,"Big data with

cloud computing: Discussions and

challenges"-2022

3.Ishu Gupta;Ashutosh Kumar Singh;Chung-

Nan Lee;Rajkumar Buyya,

Volume 07, Issue 05, Dec 2023 ISSN 2581 – 4575 Page 84

"Secure Data Storage and Sharing Techniques

for Data Protection in Cloud Environments: A

Systematic Review, Analysis, and Future

Directions

",2022

4.Garima Sinha;Rekha Chapagain;Apsara

Budhathoki;Kunal Sarkar;Anjali Kumari

Mandal;Owk Manorishik."Infrastructure as a

Code Chatbot using Natural Language

Processing",2023

5.Rrezarta Krasniqi;Hyunsook

Do,"Generalizability of NLP-based Models for

Modern Software Development Cross-Domain

Environments

",2023

6.Ranci Ren;Sara Pérez-soler;John W.

Castro;Oscar Dieste;Silvia T. Acuña,"Using

the SOCIO Chatbot for UML Modeling: A

Second Family of Experiments on Usability in

Academic Settings",2022

7.Giovanni Almeida Santos;Guilherme Guy de

Andrade;Geovana Ramos Sousa

Silva;Francisco Carlos Molina Duarte;João

Paulo Javidi Da Costa;Rafael Timóteo de

Sousa,"A Conversation-Driven Approach for

Chatbot Management",2022

