

A Peer Reviewed Research Journal

Design and optimization of bevel gear using dynamic analysis method

Mr. S. Rama Krishna

Balaji Institute of Technology & Science

ABSTRACT- Gears are central resource for power transmission in computerization industry. Slant apparatuses are utilized to transmit the power between two crossing shafts at practically any edge or speed. Slope riggings transmit control between two converging shafts at any edge or between non-meeting shafts. While transmitting power bevel gears are suffer from high contact stress due to frictional force in between two mating gears. These high contact stresses will reduce by using optimum bevel gear's tool profile angle with high strength material. If tool profile angle design will not make accurate then gear will goes to failure in fracture. The fundamental point of this task is to upgrade the structure of slope equips by decreasing device profile edge. Structure of incline apparatuses done utilizing Unigraphics CAD programming and Ansys FEA programming is utilized in this task for performing dynamic examination of slant gears. In view of examination results best slant apparatuses will propose. This apparatuses will investigated by high quality Steel amalgam material.

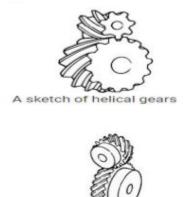
Keywords – Bevel Gear, Ansys FEA, CAD, Transmitting Power.

I. INTRODUCTION

Crossref

A gear is a pivoting machine part having cut teeth, or by virtue of a cogwheel, implanted teeth (called gear-teeth), which work with another toothed part to transmit torque. Prepared devices can change the speed, torque, and course of a power source. Riggings frequently produce a modification in torque, making a mechanical ideal situation, through their device extent, and thus may be seen as a clear machine. The teeth on the two cross area furnishes all have a comparable shape. At any rate two cross segment gears, working in a gathering, are known as an apparatus train or a transmission. An apparatus can work with a direct toothed part, called a rack, making translation instead of turn.

Fig. 1 shows the different gears



Crossref

HELICAL GEAR Helical apparatuses are utilized with parallel shafts like spike equips and are barrel shaped riggings with winding tooth lines. They have preferred teeth fitting over spike equip and have predominant quietness and can transmit higher burdens, making them appropriate for fast applications.

II. LITERATURE REVIEW

A Peer Reviewed Research Journal

Karlis Paulins et al (2014) created winding incline gear with improved plan of rigging spaces with enhanced tooth closes. It is conceivable to advance rectangular-produced, winding incline pinion/gear sets with steady tooth stature and a typical pitch cone peak. The work effectively accomplished the recalculation of the apparatus spaces, with no adjustments in the flank geometry or tooth-cutting procedure. At the point when the mating pinion is planned without a corresponding front cone, it is silly to structure the rigging reciprocal with a back cone. Progressively reasonable geometry for current machining and checking of spaces, because of the consideration of chamfer type surfaces in the essential structure. Jihui Liang, 2lili Xin (2013) clarified the dynamic recreation of winding incline gears. Mechanical properties of winding slant apparatus have noteworthy effect in general mechanical structure and assume a significant job in the framework quality check, improvement, flaw conclusion and shortcoming forecast. The rigging tooth cross section and dynamic burden is a significant issue in the apparatus research field. The exact demonstrating of winding angle rigging depends on **SOLIDWORKS** programming and virtual model of apparatus fitting parameterization is acknowledged through ADAMS. Xiang Tieming et al (2015) did the free modular examination for winding apparatus wheel dependent on Lanczos strategy. So as to get the winding slope apparatus wheel normal frequencies and mode shapes in the unconstrained state

Crossref

with the end goal of dynamic attributes study. So as to check the adequacy of the limited component examination results, the test modular test dependent on the motivation power hammer percussion transient single-point excitation and multi-point reaction investigation strategy has been finished. The greatest distinction estimation of regular recurrence between exploratory modular test outcome and limited component modular examination results is 29.86 Hz, the most extreme mistake rate is 0.41%, which affirmed the consequence of limited component technique is powerful and solid. III. DEFINITION PROBLEM AND METHODOLOGY Incline gears are utilized to transmit the power between two crossing shafts at practically any point or speed. While transmitting force incline riggings are experience the ill effects of high contact worry because of frictional power in the middle of two mating gears.

METHODOLOGY

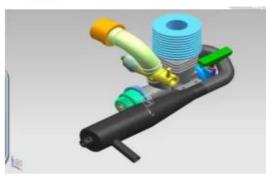
Design of bevel gear using NX-CAD

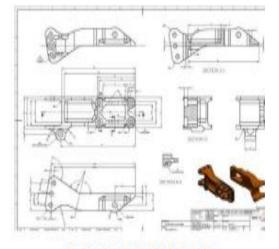
- Structural static, Modal and Harmonic analysis of
- bevel gear done using Ansys. Analysis done using Stainless steel material
- Design modified for bevel gear using NX-CAD with
- reducing tooth profile angle. Structural static, Modal and Harmonic analysis of
- bevel gear done using Ansys. Stress, Vibrations is reduced in bevel gear with optimized design

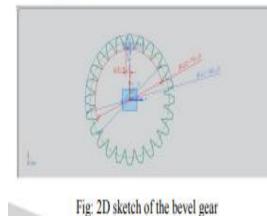
A Peer Reviewed Research Journal

IV. INTRODUCTION TO CAD COMPUTER AIDED DESIGN PC

supported plan (CAD), otherwise called PC helped structure and drafting (CADD), is the utilization of PC frameworks to aid the creation, alteration, investigation, or enhancement of a structure. PC helped plan (CAD) is the utilization of PC frameworks to aid the creation, change, investigation, or improvement of a structure.




UNI GRAPHICS INTRODUCTION Overview of Solid Modeling The Unigraphics NX Modeling application gives a strong displaying framework to quick empower theoretical plan. Specialists can join their prerequisites and confinements structure by characterizing numerical connections between various pieces of the plan. Creating and Editing Features Highlight Modeling gives you a chance to make highlights, for example, gaps, spaces and notches on a model. You can then legitimately alter the components of the element and find the element by measurements


Crossref 🥻

3D MODEL OF BEVEL GEAR

GEAR DESIGN

A Peer Reviewed Research Journal

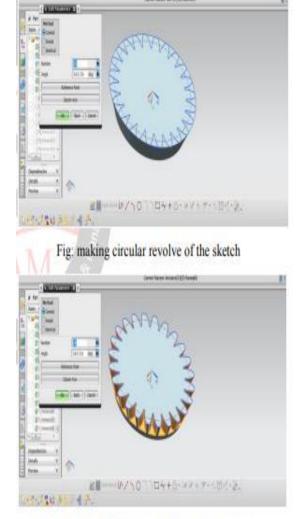


Fig: 3D model of the bevel with teeth extrusion

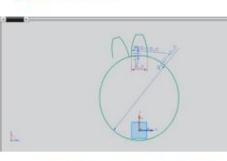


Fig: final model of the bevel gear

ANSYS

Crossref

Fig: 2D sketch of the pinion design

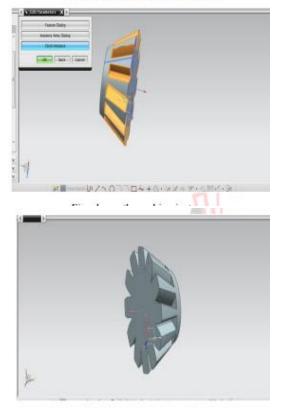
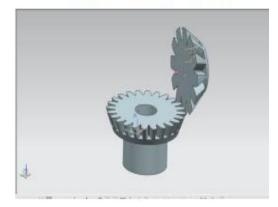
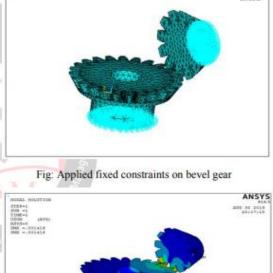


Fig: shows the 3D model of the pinion




Fig: shows the final 3D model

A Peer Reviewed Research Journal

V. STRUCTURAL ANALYSIS OF BEVEL STATIC ANALYSIS OF BEVEL

Fig: Imported design in Ansys ANSYS ELDIDITS ADS 30 2019 20:14:27

1478-00 4740-04 TRUE-SE 001102

Fig.: Displacement results on bevel gear

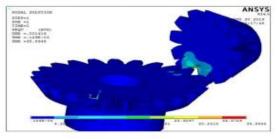
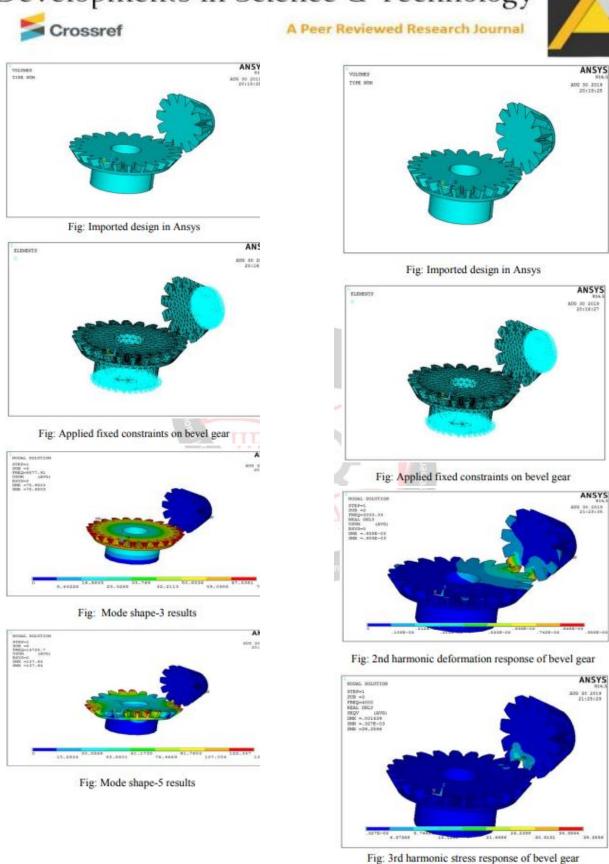



Fig: Stress results on bevel gear

L WAAN

Fig: 2D sketch of the gear

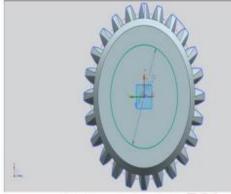


Fig: shows the sketch of top head

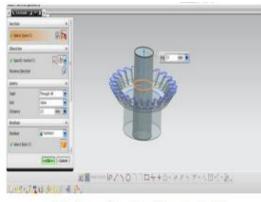


Fig: shows the subtraction of material

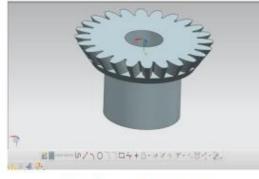


Fig: shows the 3D model of gear

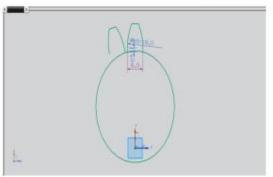


Fig: shows the 2D sketch of the pinion

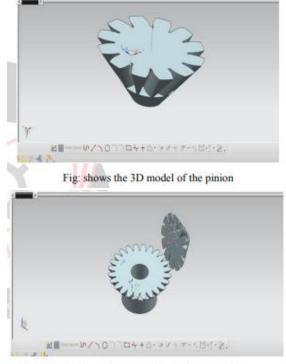
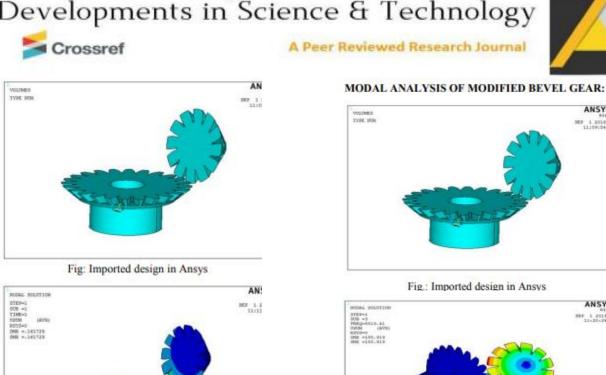



Fig: shows the assembly of final model VI. STRUCTURAL ANALYSIS OF MODIFIED BEVEL GEAR STATIC ANALYSIS OF BEVEL GEAR Young's Modulus 206000 MPA Poisson's Ratio = 0.3 Ultimate Tensile Strength = 1030 MPA Density= 7850 Kg/m3

2581-4575

ANSYS SEP 1.2015 11109154

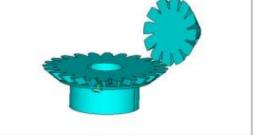


Fig.: Imported design in Ansys

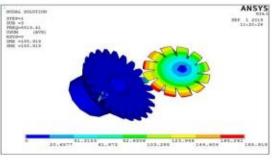
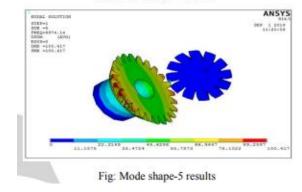
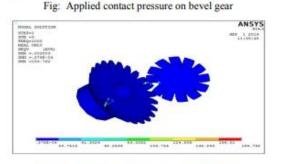



Fig: Mode shape-3 results



Fig: Stress results on bevel gear



Crossref

HARMONIC ANALYSIS OF MODIFIED BEVEL GEAR

VII. RESULTS AND CONCLUSION Bevel gear design studied briefly in this project. To develop design of bevel gears, UNIGRAPHICS software is used. Ansys software is used for performing analysis of bevel gears.

Analysis results are given below

RESULTS	EXISTED BEVEL GEAR	MODIFIED BEVEL GEAR
Deformation(mm)	0.001	0.161
Stress(MPa)	38.89	23
Natural frequency range (Hz)	8533 - 14729	7905 - 9974
Forced frequency range (Hz)	2666 - 4000	666 - 1000

From analysis results concluded that modified bevel gear formed less stress and less frequency results. So it is the best for transmitting high power **REFERENCES**

 Bhandari V.B., (2003), Design of Machine Elements, Tata McGraw-Hill Publishing Company Ltd, New Delhi
 Ratnadeepsinh M. Jadeja et al (2013), "Bowing Stress Analysis of

A Peer Reviewed Research Journal

Bevel Gears", International Journal of Innovative Research in Science, Engineering and Technology, 3041-3046

[3] Bruzhas V.V. et al (2015),"Development of strong state models for the apparatuses of various geometry", Procedia Engineering 129 (2015) 369 – 373

[4] Abhijeet .V. Patil et al (2014), "Investigation of twisting quality of slant gear by FEM", International Journal of Innovative Research in Advanced Engineering, 424-429

[5] M. Muralidhara Rao et al (2015), "Showing and Analysis of Spiral Bevel Gear", International Journal of Advances in Marine Engineering and Renewables, 85-91

[6] Shigley, Mechanical Engineering, McGraw–Hill Primis, Eighth Edition, ISBN: 0–390–76487–6

[7] PSG College of Technology, 2008, Design Data Book, Coimbatore

[8] Josip Bernic et al (2015),
"Examination of Mechanical Properties and Resistance to Creep of 20MnCr5 Steel and X10CrAlSi25 Steel", Procidia Engineering 100 (2015) 84 – 89

[9] IS 9283:2013, Indian standard Motor for submersible siphon sets – determination second amendment

[10] J.Thomson, et, al. "Advancement of without lead bearing material for aviation application ", International diary for metal throwing, 2010, ISSN 1939-5981