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ABSTRACT 

Improvement of railway capability results in heavier axle loads and higher speed lines, which further 

induces railway subsidence. In order to ensure a good railway performance and reduce railway life 

cycle costs, railway subsidence should be measured regularly. The paper aims to assess railway 

performance by monitoring land subsidence along the railway, predicting railway subsidence in the 

future based on historical subsidence records. Persistent Scatterer Interferometric Synthetic Aperture 

Radar (PS-InSAR) is adopted in this research for monitoring land subsidence along the railway while 

Autoregression Moving Average (ARMA), artificial neural network and grey model are applied for 

subsidence prediction. However, for the successful interpretation of the observed deformation within 

a structure, or between structures, it is imperative to associate a radar scatterer unambiguously with 

an actual physical object. Unfortunately, the limited positioning accuracy of the radar scatterers 

hampers this attribution, which limits the applicability of MT-InSAR.  

INTRODUCTION 

Railway systems consist of a complex 

collection of constructions, such as 

embankments, tunnels and bridges, subject to 

changing environmental conditions (geology, 

relief). As a result, several processes impact 

the structural health of these networks, 

depending on their locations. Examples are the 

differential subsidence of assets in soft soils, 

slope instabilities/slow landslides in 

mountainous areas, embankment instabilities, 

and aging and degradation of concrete 

constructions. Due to the foundation and 

construction of a railway section, several 

processes may occur on a very local scale. For 

example, in soft soils, the embankment with 

the rails may show a different deformation 

behavior compared to the catenary poles. 

Significant differential settlements have been 

observed in the transition zones relative to 

fixed structures. Current approaches for 

structural health monitoring are  

 

levelling, linear variable differential 

transformers and video based systems. While 

the latter can be used to monitor dynamic 

displacements, their applicability is limited 

due to manual operation and localized 

implementation. MT-InSAR is complementary 

to these in situ techniques and has the 

advantage of wide area applications, frequent 
revisits, and a millimeter level precision.  

For a proper analysis and interpretation 

of MT-InSAR products, the locations of the 

coherent scatterers (CS) need to be known 

with at least decimeter level precision. 

Unfortunately, whereas the relative 

displacements with MT-InSAR is estimated 

with millimeter-level precisions, the 

positioning precision of radar scatterers is 
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usually poor, in the order of meters. As a 

consequence, it is difficult to link the radar 

scatterers to the ground objects, which 

hampers the interpretation of the deformation 

signal and limits the applicability of MT-

InSAR. The positioning accuracy of CS is 

dependent on: (i) factors influencing all CS 

systematically; and (ii) factors specific for 

each individual CS. The largest systematic 

uncertainty is introduced by the unknown 

absolute height of the reference CS. If a corner 

reflector or radar transponder is available for 

the whole time series, the reference height 

offset can be estimated by measuring its 

position. However, often such a device is not 

available. Airborne LiDAR provides 3D point 

clouds with very high spatial density, thus 

LiDAR points can be found close to all radar 

scatterers, which makes it attractive to 

estimate the systematic MT-InSAR height 

offset based on the full CS dataset. 

Poor spatial resolution has been one of 

the main drawbacks of SAR data until 

recently. The launch of a new generation of 

high-resolution SAR satellites has 

dramatically increased the level of detail 

visible in SAR images. A high density of PS 

points can be detected, and more precise 

subsidence monitoring information extracted 

with high-resolution SAR data. Utilizing a 

high-resolution of 1 m and a short revisit time 

of 11 days offers a chance for TerraSAR-X 

(TSX) data to identify targets that need 

detailed information. The subsidence along 

subway tunnels and several highways in 

Shanghai was monitored with time series 

InSAR data collected by COSMO-SkyMed 

satellites. The high-resolution data of 3 m 

reveals impressive details of the ground 

surface deformation. TomoSAR with higher-

order permanent scatterers analysis was found 

to be a useful way to interpret the height and 

deformation of building areas, especially for 

very high buildings. Meanwhile, X-band PSI 

analysis makes possible the analysis and 

interpretation of the thermal expansion signal 

of single objects like buildings and bridges. 

Moreover, an extended PSI model was 

presented and a new PSI product, the thermal 

expansion map, was generated. Building 

facades were proven to be reconstructed by 
multiview TomoSAR point’s clouds. 

Notwithstanding the great efforts made 

in seeking the best approach, MT-InSAR 

technology is still far from being adopted as 

an operational tool for the monitoring of 

subsidence along a railway. One practical 

issue is that there is little chance to assess the 

high-density leveling campaign along LMLFs 

to validate the time series results of MT-

InSAR analysis. In this paper, the research 

carried out on MT-InSAR analysis along 

Jingjin Inter-City railway is introduced. First, 

the potential of TSX data for the monitoring of 

subsidence along a high-speed railway is 

explored. Second, an estimate of the precision 

of the monitoring of subsidence with high-

resolution MT-InSAR is analyzed and 

validation of the leveling data of high 

spatial/temporal sampling along Jingjin Inter-

City railway is made. TSX MT-InSAR 

analysis was carried out by using SARPROZ. 

The output of the work will be useful to 

provide reference and will be helpful for 

further planning of subsidence monitoring 
over LMLFs. 

The methods used to predict land 

subsidence can be divided into three main 

types: classical layer-wise summation, 

numerical calculation based on consolidation 

theory, and curve fitting. Curve fitting, which 

makes use of a mathematical formula to 

acquire a curve that best fits the field data and 
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precisely reflects real world land subsidence, 

is used in many projects. In this paper, we 

analyze the performance of four frequently 

used curve fitting methods (Zhou et al. 2010; 

Wang 2009): hyperbola, expanded hyperbola, 

three-point fitting and the Asaoka method. The 

research of Chen Shanxiong suggests that 

expanded hyperbola matching possesses a 

higher correlation coefficient yet larger 

relative error than hyperbola fitting, while the 

Asaoka method may not apply in certain soil 

conditions despite strong correlation 

coefficients.  

A number of methods for predicting 

land subsidence and monitoring deformation 

under high speed railway tracks exist, and are 

divided into three categories: layer-wise 

summation, numerical calculations based on 

consolidation theory, and curve fitting. One of 

these, curve fitting, including the hyperbola, 

expanded hyperbola, three-point fitting and 

Asaoka methods, is widely used because it is 

computationally simple and applicable in 

many situations. In this paper, we analyze the 

performance of the four classical curve fitting 

methods using field data and propose a novel 

approach to estimate land subsidence. The 

new method integrates three-point fitting, 

which is computationally simple whilst 

stringent in terms of correlation restrictions, 

with the Asaoka method to significantly 
improve performance in practical applications. 

Railway Subsidence Prediction: 

Railway subsidence monitoring over a 

certain period can be considered as typical 

discrete time series. Therefore, most of 

standard time series prediction approaches can 

be utilized to forecast its future subsidence. In 

general, these methods can be divided into 

statistical models and non-statistical models. 

Auto-regressive moving average (ARMA) can 

be categories as the former, while neural 

network (NN) models based on artificial 

intelligence are representative of the latter. 

Furthermore, in early 1980’s, a new predictive 

analysis methodology called grey system 

theory was introduced by Deng. It is capable 

of handling time series that have limited 

number of observations and contain unknown 

parameters and inter-relationships. 

The profile function and influence 

function methods are now widely employed in 

all methods due to their practicality and ease 

of use. For conditions in which the topsoil is 

thick and the overburden strata include no 

ultra-thick and hard stratum (UTHS), the 

aforementioned methods have relatively high 

precision for predicting surface subsidence. 

However, for overburden strata with UTHS, 

the prediction results often differ greatly from 

measured results. For example, when mining 

under the ultra-thick igneous rock of the Haizi 

Coal Mine, the predicted maximum surface 

subsidence value obtained using influence 

function methods was significantly larger than 

the measured value (1270 mm versus 457 mm, 
respectively). This occurs because most of the 

above prediction methods consider the 

overburden strata as a homogenous medium. 

When the composition of the overburden 

strata is fairly uniform, this simplification is 

reasonable. However, surface subsidence is 

the result of a gradual development of 

overburden strata from bottom to top after 

mining, and different compositions of 

overburden strata have strong impacts on 

surface subsidence. Although the existing 

prediction methods take into account the 

influence of lithology of overburden strata on 

surface subsidence when choosing the 

prediction parameters, consideration of 
overburden remains insufficient. 
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Layer artificial neural network 

Subsidence is a global problem and, in 

the United States, more than 17,000 square 

miles in 45 States, an area roughly the size of 

New Hampshire and Vermont combined, have 

been directly affected by subsidence. More 

than 80 percent of the identified subsidence in 

the Nation has occurred because of 

exploitation of underground water, and the 

increasing development of land and water 

resources threatens to exacerbate existing 

land-subsidence problems and initiate new 

ones. In many areas of the arid Southwest, and 

in more humid areas underlain by soluble 

rocks such as limestone, gypsum, or salt, land 

subsidence is an often-overlooked 

environmental consequence of our land- and 
water-use practices. 

When you look at the photo below of 

the Basilica in Mexico City, do you find 

yourself asking if it might not look straight? In 

fact, the foundation of the Basilica on the left 

is sinking and this sinking phenomenon is 

happening throughout Mexico City, where 

long-term extraction of groundwater has 

caused significant land subsidence and 

associated aquifer-system compaction, which 

has damaged colonial-era buildings, buckled 

highways, and disrupted water supply and 

waste-water drainage. Some buildings have 

been deemed unsafe and have been closed and 

many others have needed repair to keep them 
intact. 

FLOWCHART 

 

METHODOLOGY 

After PS detection, all PSs are connected to 

form a Delaunay triangulation network, which 

is taken as the subsidence observation 

network. Phase modeling is based on the 

concept of neighborhood differencing applied 

to each of the links in the Delaunay 
triangulation network. 

Given N differential interferograms, the phase 

values at two neighboring PSs (e.g., p and q) 

extracted from the its differential 
interferogram can be expressed by 

 

 

where Φ∗i is the wrapped phase at the PSs; v∗ 
and ε∗ are the subsidence rates and the 

elevation residuals (due to uncertainties in the 

SRTM DEM used) at the PSs, respectively; 

BTi is the TB of the ith interferogram; B⊥i,∗ 
is the SB of the PSs in the ith interferogram; λ 
is the radar wavelength (3.1 cm for the TSX 
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system); R∗ and θ∗ are the sensor-to-target 

range and the radar incident angle at the PSs, 

respectively; ϕ⌢∗i is the residual phase 

consisting of the nonlinear subsidence, 

atmospheric artifacts, orbit errors, and 

decorrelation noises; and 2k∗π denotes the 
integer ambiguity of the wrapped observation 
phases. 

After neighborhood differencing, the 

phase increment (Φ⌢i) between the two 

adjacent PSs of each link can be derived by 

using Eqs. (2) and (3) and represented as a 

function of the subsidence rate increment (υ), 
the elevation residual increment (ξ), and the 
residual phase increment (ϕ⌢p,qi) [12]. N 

differential equations can be obtained by using 

N differential interferograms. In each link, υ 
and ξ can be estimated by maximizing the 

following objective function. 

 

where R¯, θ¯, and B¯⊥i are the mean sensor-

to-target range, the mean radar incident angle, 

and the mean perpendicular baseline between 

two PSs, respectively; γ is the model 
coherence (MC) of the link; and j=−1−−−√. υ 
and ξ can be derived by searching within a 
given solution space (e.g., −5 to 5 mm/year for 
υ and −20 to 20 m for ξ when high-resolution 

TSX images are used) to maximize the MC. In 

this study, the searching procedure was carried 

out with step values of 0.01 mm/year and 0.02 
m for υ and ξ, respectively. 

Once the subsidence rate and elevation 

residual increments of all the links are 

estimated, the Delaunay triangulation network 

can be treated by the weighted least squares 

(LS) adjustment to estimate the subsidence 

rates and the elevation residuals of all the PSs. 

The square of the maximized MC value of 

each link is considered the weight. An LP with 

subsidence rate obtained through leveling 

measurements can be considered as a 

reference point for the LS adjustment. In this 

paper, we focus on analyzing the PSI-retrieved 

subsidence along road networks. A detailed 

discussion on PSI approach is beyond the 

scope of this work and can be found. 

CONCLUSION 

A time series analysis of railway 

subsidence is carried out based on the 

application of PS-InSAR which provides a 

method for land subsidence monitoring over 

large coverage and long time span. Railway 

sections with serious subsidence are selected 

for more frequent subsidence monitoring. 

Based on the historical subsidence information 

acquired from PSInSAR, railway subsidence 

can be predicted by ARMA, artificial neural 

network and grey model and a railway 

maintenance plan will be established 

according to the prediction result. Apart from 

railway subsidence monitoring and prediction, 

safety assessment of railway infrastructure 

should be considered as the future work for an 

integrated approach of railway performance 

assessment. Wet weather has already affected 

the infrastructure of both railway and highway 

in the UK. For instance, wet weather resulted 

in a 15 ft-deep sinkhole on M2 near 

Sittingbourne in 2014. In addition, land 

subsidence occurred at London Jubilee Tube 

Extension Line due to water extraction.  

As a result, a safety assessment which 

considers factors that might threaten the 

stability of railway infrastructure should be 

adopted. The factors which have the most 

significant contribution on infrastructure 

deterioration will be identified through fuzzy 

logic model and neural network. Generally 
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speaking, risk level of a safety factor is 

determined by its frequency of occurrence and 

consequence severity. However, frequency 

and severity of some factors related to railway 

infrastructure are uncertain, fuzzy logic model 

can be adopted to assess safety by identifying 

risk level and risk degree of the factors. 

Railway safety level can be also assessed 

based on a comprehensive evaluation on 

factors that have influential impact on railway 

safety together with their corresponding 

weights in the total contribution to railway 

safety. Artificial neural network model has 

been demonstrated to be capable of 

determining these weights through its various 

learning algorithms and processes. 
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