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ABSTRACT 

Ground subsidence susceptibility at a coal mine by integration of L-band SAR measurements 

and a subsidence hazard model incorporated in GIS was estimated. A subsidence hazard map was 

constructed using JERS-1 SAR data from the early 1990s and the subsidence hazard model. A 

certainty factor analysis was employed for estimating the relative weights of four control factors 

influencing coal mine subsidence. The relative weight of each factor was then integrated to generate 

a subsidence hazard index (SHI) by a fuzzy combination operator. The hazard map was validated by 

comparison with subsidence observed by ALOS PALSAR interferometry in 2007-2008. The results 

showed a good agreement between the predicted locations vulnerable to subsidence and the actual 

subsidence occurrences with an accuracy of about 72.5%. These results showed that the map 

produced by integration of InSAR and GIS can be used to predict and monitor coal mine subsidence 

hazards, especially in remote regions. 

INTRODUCTION 

Ground subsidence over the Nobi Plain 

is a natural phenomenon occurring due to 

natural compaction of the soft sedimentary 

layers of the plain and the tilting of the Nobi 

geomorphologic structure itself. Subsidence 

rate of 23 cm/year was recorded at an 

observational point in Minato Ward, Nagoya, 

in 1973. However, such a large-scale 

subsidence cannot be explained by the above-

mentioned factors alone. The acceleration of 

compaction and contraction due to falling 

groundwater levels can be pointed as one of 

the other major man-made factors with 

potentially remarkable impacts. These falling 

levels are a consequence of the fast increase in 

pumping ground water following the rapid 

postwar economic growth over the area, and 

which could not be matched by natural 

replenishment of ground waters. Similar 

ground level subsidences have also been 

reported in relationship with the 

overexploitation of ground waters in many 

other parts of the World (see for a detailed 

review). 

This ground subsidence over the Nobi 

Plain became well known following the Ise-

wan Typhoon (Typhoon Vera) in autumn 
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1959. In its Annual Report in 2000, the Land 

Subsidence Survey Committee of the Three 

Prefectures in Tokai Region reported that, 

after the 1959 typhoon, a gradual expansion of 

the subsidence area peaking in 1973–1974 was 

observed, followed by a slowing trend in 

subsidence activity since then, more likely 

because of such factors as the strengthening of 

regulations concerning groundwater pumping. 

We have to note here that very few researches 

have been performed on this subject so far, 

notwithstanding the remarkable ground 

subsidence still observed to occur in some 

areas of this Plain, even nowadays, or the 

rising grounds found in many other parts. 

These changes in ground level conditions are 

likely to imperil the foundations of life-

sustaining infrastructures in this area, 

including damages to build up structures, 

especially in the case of tsunamis or sea level 

increase due to the global warming. All these 

facts are a great source of concern for 

residents in the region. 

The analysis on ground changes by 

InSAR can be expected as in recent years, 

interferometric synthetic aperture radar 

(InSAR) technology has been more and more 

in use to estimate with high precision the 

spatial distribution of changes in the Earth's 

crust surface height and the amount of such 

changes at each specific location. This new 

approach can be considered as a 

complementary method to by traditional 

standard measurements for monitoring ground 

subsidence. More specifically, ground level 

subsidence reported in relationship with the 

overexploitation of ground waters has been 

analyzed using InSAR techniques in many 

parts of the World. This is the case of Lisbon 

in Portugal, the Pingtung Plain and the 

Chousui River Alluvial Fan in Taiwan, the 

Campania Region and Bologna in Italy, as 

well as Kolkata City in India. It is expected 

the InSAR techniques, as well as its more 

recent variants such as the PSInSAR, will 

become powerful complementary, or even 

substitute, methods to traditional ground 

subsidence observation using leveling and 

other methodologies used so far. 

Changes in atmospheric water vapor 

are extremely complex, with 3-dimensional 

changes taking place not only in the vertical, 

but also in the horizontal directions. It is 

extremely difficult to correct for the local 

effects of water vapor when local aerological 

data are not available. The PSInSAR method 

attempts to handle this issues by temporal 

averaging of up to 30 SAR images. 

Conventional researches with respect to the 

atmospheric impacts on InSAR mainly 

examine the effects of changes in atmospheric 

water vapor with altitude, limiting therefore 

the precision of this methodology in most of 
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the past studies on atmospheric delay using 

InSAR techniques. 

In this study, using GIS as analytical 

platform, we aim at estimating the spatial 

variation and the temporal changes in ground 

subsidence over the Nobi Plain using both 

ground level measurements data and InSAR 

data. However, notwithstanding the 

availability of weather charts and detailed 

information of ground surface atmospheric 

conditions (temperature, pressure, water 

vapor, wind, etc.) over Japan during the JERS-

1 period (1992–1998), detailed information for 

upper atmospheric layers has been made 

available by the Japan Meteorological Agency 

only after 2002 with its multi-layer and multi-

temporal Grid Point Value of Meso-Scale 

Model (GPV-MSM) data set (see Section 2.2 

for details). We therefore propose to use the 

Analog Weather Chart (hereafter, AWC) 

method [35,36] in order to estimate from the 

analog GPV-MSM weather charts and datasets 

those water vapor inputs needed for 

calculating water vapor effects on the JERS-1 

SAR interferometry data. 

Data generation for training and testing 

In this subsection, we summarize the 

generation process of our training and test 

data. There are some common surface 

deformation measurement systems that are 

used to monitor and measure land subsidence, 

such as precise theodolite vertical angles and 

electronic levels (Savvaidis 2003). These 

common systems are really useful, and the 

approximated accuracies are close to 10 mm. 

They are straightforward and suitable for 

small regions (Koros and Agustin 2017). 

Furthermore, since these systems are ground 

point-based, they are usually affected by some 

problems in the process of field surveying and 

information gathering (Nagaomo et al. 2007). 

Nowadays, monitoring of ground deformation 

hazards such as land subsidence is possible 

using remote sensing satellites. The land 

subsidence inventory database of the study 

area was created using DInSAR data. In this 

study, the interferometric wide swath (IW) 

modes of Sentinel-1 images were used for 

further processing. This satellite (launched by 

the European environmental monitoring 

program Copernicus in 2014) presents 

synthetic aperture radar (SAR) data for ground 

deformation applications (Yu et al. 2017). 

Two sets of SAR images acquired at different 

times are the main input for the approach 

(Barra et al. 2017). To avoid the impacts of 

vegetation cover changes our first and second 

selected images were taken on 22 August 2015 

and 22 August 2017, respectively. The 

Sentinel-1 IW interferometric pair was 

coregistered by the precise orbit state vectors 

and DEM (Jiang et al. 2017).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926571/#b35-sensors-14-00492
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926571/#b36-sensors-14-00492
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
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The next step was to generate an 

interferogram. Because Sentinel-1 applies the 

TOPS (Terrain Observation by Progressive 

Scan) imaging mode (De Zan and 

Guarnieri 2006), it is able to cover a wide area 

(Yagüe-Martínez et al. 2016). This leads to 

images being captured within a series of 

overlapping regions (Czikhardt et al. 2017). 

Therefore, the small difference within overlap 

bursts is advantageous for retrieving the 

horizontal motion of the ground parallel to the 

satellite path (Grandin et al. 2016). The noise 

of these bursts was removed in a de-bursting 

process. De-bursted stacks were used to 

subtract the topographic phase. A Goldstein 

filter (Goldstein and Werner 1998) was 

applied to the results to improve the phase 

measurement. This filter has also been 

effective in reducing phase noise and before 

the implementation of unwrapping process 

(Notti et al. 2015). The resulting deformation 

map is presented in Figure 1, and all these 

steps are shown in Figure 4. The resulting 

deformation map provides detailed 

information on surface deformation for 

landslides and land subsidence. However, in 

this study, we focused on just land subsidence. 

For more certainty, the subsidences that 

occurred with a magnitude of over 0.02 metres 

were selected for both training and test data. 

Seventy percent (6654 pixels) of these areas 

were randomly selected as training data. 

 

METHODOLOGY 

Fuzzy inference system 

A fuzzy inference system (FIS) 

includes expert knowledge and experience to 

design a process with input and output fuzzy 

sets that are controlled by if–then rules 

(Armaghani et al. 2015a). In simple terms, a 

FIS is a system which can obtain new 

knowledge from existing knowledge by using 

fuzzy logic (Camastra et al. 2015; 

Cavallaro 2015). A fuzzy inference system is 

made up of three sections: the first section is 

the fuzzification process when all crisp values 

are converted to a linguistic input value using 

a MF of the system (Tahmasebi and 

Hezarkhani 2012). The inference engine is the 

second part and is used to assess the degree of 

membership of input data based on the output 

fuzzy sets (Bui et al. 2012). Finally, the fuzzy 

output values are converted to crisp values in a 

process called defuzzification (Armaghani et 

al. 2015a). It can be said that the inference 

system can produce fuzzy output values based 

on inference rules as soon as it obtains fuzzy 

values. 

https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564#F0001
https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564#F0004
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR3
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR14
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR15
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR73
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR10
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR3
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Structure of a fuzzy inference system 

Generally, three main fuzzy inference 

systems are used in the literature: The 

Mamdani model, the Takagi and Sugeno 

(TKS) model, and the Tsukamoto model. The 

second model (TKS) is more common 

(Shabankareh and Hezarkhani 2016) and used 

in this study. This model renders possible to 

create fuzzy rules from input data. Moreover, 

most of the problems do not need rigid 

conditions in their relative factors which are 

introduced to the model as input data (Wang et 

al. 2011). The difference between the 

Mamdani and TKS models were explained by 

Cavallaro (2015). The main reason for using 

the Takagi and Sugeno model in this study is 

that it is a linear combination of inputs and has 

fuzzy inputs and crisp outputs (Naderloo et 

al. 2017). It is also a very efficient 

computational method for optimization as well 

as in terms of its implementation. 

Hybrid learning algorithm 

An ANN learning algorithm is used in ANFIS 

to set up the fuzzy inference system with 

determined input and output data (Tahmasebi 

and Hezarkhani 2012). A hybrid learning 

algorithm was used for training. This 

algorithm consists of a least-square estimator 

and gradient descent method (Anwer et al. 

2012; Pandey and Sinha 2015). The main 

objective of the training is to find the optimal 

parameters for the fuzzy inference system with 

the minimum value of the error function E, 

which is the difference between the target 

amount (ti) and the output value of the model 

(fouti) (Bui et al. 2012). 

Introducing adaptive neuro-fuzzy inference 

system structure 

ANFIS consists of a hybrid model in 

which the nodes in different layers of the 

network provide a neural network for 

estimating the fuzzy parameters (Polykretis et 

al. 2017). This model takes advantage of both 

fuzzy logic and artificial neural networks and 

combines both approaches making the most of 

their respective advantages. For further 

explanation, part a of Fig. 4 shows a Sugeno 

fuzzy model with two rules of fuzzy if–then, 

with two input values x and y, and f as an 

output (Jang 1993; Armaghani et al. 2015b). 

https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR67
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR79
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR15
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR52
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR60
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#Fig4
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR38
https://link.springer.com/article/10.1007/s11069-018-3449-y?shared-article-renderer#ref-CR4
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a Sugeno fuzzy model with two rules, 

b typical ANFIS architecture 

FLOWCHART 

 

RESULT 

 

CONCLUSION 

The quantitative prediction of locations 

vulnerable to coal mine subsidence have 

mainly been carried out based upon field 

surveyed data. However, field surveys for 

subsidence occurrence have been limited to 

the residential areas and national 

infrastructures. This study demonstrates that 

the radar interferometry is a complementary 

tool to observe the ground subsidence in that 

case. This study is specifically meaningful in 

that a subsidence hazard map was produced by 

GIS analysis based on the data acquired from 

radar observation in the early 1990s and it was 

then verified by using the data observed about 

15 years later. L-band SAR system was used 

in this study, however, there is a limitation of 

spatial resolution to detect the subsidence 

because the most coal mine subsidence in 

Korea occurs in small scale. So, the more high 

resolution of SAR, for instance X-band system 

is required for more practical use of remote 

sensing in studying coal mine subsidence. This 

study is expected to instigate the application of 

KOMPSAT-5, a Korean X-band SAR system, 

which is to be launched in 2010, to the 

detection of the ground subsidence. 
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