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Abstract—Monitoring water quality is a critical aspect of 

environmental sustainability. Poor water quality has an impact 

not just on aquatic life but also on the ecosystem. The purpose 

of this systematic review is to identify peer-reviewed literature 

on the effectiveness of applying machine learning (ML) 

methodologies to estimate water quality parameters with 

satellite data. The data was gathered using the Scopus, Web of 

Science, and IEEE citation databases. Related articles were 

extracted, selected, and evaluated using advanced keyword 

search and the PRISMA approach. The bibliographic 

information from publications written in journals during the 

previous two decades were collected. Publications that applied 

ML to water quality parameter retrieval with a focus on the 

application of satellite data were identified for further 

systematic review. A search query of 1796 papers identified 113 

eligible studies. Popular ML models application were artificial 

neural network (ANN), random forest (RF), support vector 

machines (SVM), regression, cubist, genetic programming (GP) 

and decision tree (DT). Common water quality parameters 

extracted were chlorophyll-a (Chl-a), temperature, salinity, 

colored dissolved organic matter (CDOM), suspended solids 

and turbidity. According to the systematic analysis, ML can be 

successfully extended to water quality monitoring, allowing 

researchers to forecast and learn from natural processes in the 

environment, as well as assess human impacts on an ecosystem. 

These efforts will also help with restoration programs to ensure 

that environmental policy guidelines are followed 

I. INTRODUCTION   

1.1. Water quality Water quality describes a state of a water 

body, as well as its chemical, physical, and biological 

aspects, including its usefulness for a particular activity 

(i.e., fishing, swimming or drinking). Substances that 

can damage aquatic species if found in high enough 

quantities can also impair water quality. Monitoring 

water quality is a critical aspect of environmental 

sustainability. Poor water quality has an impact not just 

on aquatic life but also on the ecosystem. The following 

variables are also be used to provide an indicator of 

water quality: the content of dissolved oxygen (DO); 

amounts of fecal coliform bacteria from people and 

animal wastes; levels or ratio of plant nutrients nitrogen 

and phosphorus; volume of particulate suspended matter 

(turbidity) and the amount of salt (salinity) in the water. 

To assess water quality, quantities of substances such as 

pesticides, herbicides, heavy metals, and other pollutants 

can be calculated. The abundance of chlorophyll-a (Chl-

a), a green pigment present in microscopic algae, is 

often filtered from water samples in many water bodies 

to provide an indicator of the microalgae living in the 

water column [1]. 

1.2. Satellite and remote sensing Remote sensing is the 

method of surveying the surface of the earth without 

making any physical connection. It is used primarily to 

collect data from the earth's properties and analyze 

changes in the earth's environment. Along with 

improvements in satellite technologies and device 

processing capability, remote sensing has become more 

widely used in this era. Remote sensing generates 

spectral, infrared, and radar images that can be 

interpreted and analyzed to extract useful knowledge 

about earth elements like water, soil, plants, and the 

atmosphere, among others. These data are often used to 

forecast weather and environment, as well as for tracking 

animal populations, crop health, shoreline changes, and 

land-use change detection. The resolution of remote 

sensing data varies depending on the satellite capability. 

Remote sensing data has recently been produced and 

effectively utilized to collect water quality information as 

a solution to the limitations of traditional methods [2]. 

Remotely sensed data sets are usually more extensive 

than those collected directly on site by providing better 

resolution and typically higher temporal frequency and 

resolution for spatial coverage [3]. Remote satellite 

sensing examples include Landsat, Sentinel, MODIS, 

MERIS and VIIRS. 1.3. Machine learning Machine 

Learning (ML) is a type of statistical approach that can 

automatically learn from data and construct a detection, 
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estimation, or classification model that minimizes the 

variance between the training and prediction datasets 

without being actively programmed. ML, also known as 

statistical learning, is providing data to a computer that 

can be "trained" using known or predetermined attributes 

or objects to allow semi-automatic or automatic 

detection, classification, or pattern recognition. ML 

enabling remotely sensed water quality estimate has 

grown in popularity in recent years as a result of 

improvements in algorithm development, computer 

power, sensor systems, and availability of data [4]. 1.4. 

Systematic review objectives In this systematic review, 

the effectiveness of applying ML methodologies were 

investigated to retrieve water quality parameters from 

satellite data. Specifically, the objective of studies, the 

types of satellite data, the ML methodologies, the 

significance or outcome of the ML application were 

summarized. 1.5. Nomenclature Figure 1 provided the list 

of the abbreviations, acronyms and symbols used in this 

manuscript. 

  

Ⅱ.  PROBLEM STATEMENT  

 According to the systematic analysis, ML can be successfully 

extended to water quality monitoring, allowing researchers to 

forecast and learn from natural processes in the environment, as 

well as assess human impacts on an ecosystem. These efforts 

will also help with restoration programs to ensure that 

environmental policy guidelines are followed. 

 

              
                       Ⅰ. IMPLEMENTATION  

  

present in microscopic algae, is often filtered from water 

samples in many water bodies to provide an indicator of the 

microalgae living in the water column [1]. The following 

sections provide a detailed overview of each of these steps.  

  

Step 1: Data Collection and Pre-processing:   

   
 The first step in this research design is to collect and preprocess 

a dataset . The data is pre-processed by cleaning and 

normalizing the data and removing any duplicate or irrelevant 

information. Feature selection is also performed to select the 

most relevant features for the machine learning models. The 

eligibility of publications was evaluated and the publications 

were screened by examining the titles, abstracts and methods, 

and then obtained eligible publications through reading the full 

text. 

  
Step 2: Model Selection and Implementation:    The next step 

in this research design is to select and implement several 

machine-learning models. The models selected include Support 

Vector Machines (SVM), Naive Bayes, Decision Trees, 

Logistic Regression, Ensemble Models like Random Forest and 

XG Boost, These models are chosen based on their suitability 

for detecting and analysing.  

  The implementation of the machine learning models is done 

using Python and its libraries for data processing and analysis, 

such as Django,NumPy, and Pandas. The Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) 

methodology was used to prepare and report the results of this 

study [5]. PRISMA is a standard method to give a systematic 

review of existing research 

  

Step 3: Model Evaluation:   

  The final step in this research design is to evaluate the machine 

learning models based on their performance in detecting and 

analysing . The models are optimized for performance using 

techniques such as hyperparameter tuning and cross-validation. 

The process of identifying eligible articles is depicted in Figure 

2. Initially, the queries returned 1796 publications. After that, 

the publications were screened to eliminate duplicates. There 

are 473 duplicates that were removed. The abstracts and titles 

were read in order to examine the techniques and account for 

the aforementioned inclusion and exclusion criteria, resulting 

in the removal of 1196 articles and the retention of 127 for a 

more in-depth examination. Following the full publication 

review, 14 studies were excluded due to non-English language 

publications and studies that were unable to get access to the 

manuscripts. Finally, 113 publications between the year 2001 

until 2021 were included in the systematic review. Table 2 

summarizes the publications in terms of their type of satellite 

used, ML techniques involved, water quality parameters 

extracted and significance or outcomes of studies. 
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Figure.1 The Proposed system architecture Machine Learning 

Applicatiom Using Water Quality In Satellite Data  

 

 

Data Sets:  

  

The initial crucial stage is to gather data after defining the 

business problem. It is essential to comprehend the sources 

of data. The data gathered during this phase is in its raw 

form, as it may come from various sources and systems, and 

hence, it is not organized [1].  

  

‘name of the customer ’ , ‘ village , ‘mandal’ , ‘district’ , 

‘state’, ‘country’, ‘temperature’, ‘humidity’, ‘pH value’ , ‘ 

  

 

Python libraries:  

  

Library   Purpose  

Pandas  To read the dataset  

Django Setting files and data models 

 NumPy  Used for working with 

arrays  

  

                Table 1. Python Libraries   

 

  

Ⅰ.  CONCLUSIONS:  

          

 This systematic review summarized how ML has been applied 

on satellite data to study water quality issues. The initial search 

process resulted in 1796 publications, and by refining the search 

by removing 473 duplicates publication, excluded 1196 non-

related topics publications. Through the screening of 127 

publications, 113 papers have been selected for data extraction 

and synthesis. Results also showed that there is a huge variety 

of ML methods suggested especially on the retrieval of water 

quality parameters. The most common ML approaches were 

ANN, SVM, RF, DT, MLP, cubist and GP for monitoring water 

quality at regional and global scales. According to the 

systematic analysis, ML can be successfully extended to water 

quality monitoring, allowing researchers to forecast and learn 

from natural processes in the environment, as well as assess 

human impacts on an ecosystem. These initiatives will also aid 

policymakers and water resource managers in taking proactive 

actions to prevent the negative consequences of water pollution 

through restoration projects, as well as ensure that 

environmental regulatory rules are followed. 
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