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ABSTRACT 

In this paper a systematic methodology for linear design of lateral autopilot has been proposed and 

investigated. The objective of this methodology is to obtain the parameters from a set of 

parametric equations, performance measurement and the characteristic of the plant and the 

available actuator. The methods for a kind of design situation has been shown and illustrated with 

examples. In this work a pole placement method for designing a linear missile autopilot system is 

presented. A procedure for the choice of proper closed-loop pole location has been done which 

assures desired transient performance. For specified stability margins some control over the 

missile body rate, peak fin deflection and fin rate can be achieved. State vector feedback control 

provides the freedom to choose close loop poles satisfying the desired transient response. The 

autopilot system considered is a forth order plant. Two pairs of complex poles have been chosen 

to dictate the closed loop performance. An adequate separation between them can assure that the 

non-dominant poles have negligible effects on the system performance. This study provides a 

design methodology for lateral autopilots applying incomplete state feedback using pole 

placement technique. An incomplete state feedback controller has been designed to eliminate the 

need for an observer system. From this design desired stability margins with different speed of 

responses has been achieved which might be utilized a choice of autopilot speed of response. 

Keywords: Autopilot, Kharitnov’s thorem, Incomplete state feedback controller, Speed of responses. 

 

1. INTRODUCTION 

In this paper a unified set of design 

formulae has been developed with 

appropriate level of approximations which 

are valid for a class of missiles and different 

autopilot configurations. This paper presents 

design relations for two loop autopilots. This 

is done by deriving a set of reasonably  

 

accurate expressions for evaluating the 

autopilot performance in the frequency 

domain. These expressions are represented in 

a suitable form for appreciating the effects of 

variations of important design parameters.  

For tactical guided missiles lateral autopilots 

[1] are servo systems delivering lateral 

acceleration according to the demand from 
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the guidance computer. For aerodynamically 

controlled skid to turn missiles, the autopilot 

activates the actuator to move the control 

surface suitably for orienting the missile 

body with respect to the flight path. The 

objective of this paper is to develop a 

systematic methodology for the design of 

autopilot for a class of guided missile.  Few 

authors recognize that autopilot design path 

may vary widely depending on the situation.  

A systematic methodology for linear 

design of lateral autopilot has been proposed 

in this paper. The objective of this 

methodology is to obtain the parameters 

from a set of parametric equations, 

performance measurement and the 

characteristic of the plant and the available 

actuator. The methods for a kind of design 

situation has been shown and illustrated with 

examples. [1] 

          A pole placement method for 

designing a linear missile autopilot system is 

presented in this article. A procedure for the 

choice of proper closed-loop pole location 

has been done which assures desired 

transient performance. For specified stability 

margins some control over the missile body 

rate, peak fin deflection and fin rate can be 

achieved. An incomplete state feedback 

controller has been designed to eliminate the 

need for an observer system. From this 

design we can achieve desired stability 

margins with different speed of responses 

might be utilized a choice of autopilot speed 

of response. [2] 

The missile autopilot design using 

linear parameter varying control techniques 

has been taken from the paper [3].  The 

controller provides exponential stability 

guarantee and performance bound in terms of 

the missile plant. A systematic gain 

scheduling approach is one of the most 

popular nonlinear control design techniques 

which have been widely used in the fields 

ranging from aerospace and process control.  

In the paper [5] we can find a θ-D design 

technique of nonlinear missile autopilot. A 

variety of Hα techniques to develop tactical 

missile autopilots robust to the presence of 

parametric variations have been analyzed in 

[6,10]. The Routh Hurwitz and Kharitnov’s  

Criterion is discussed in the book Modern 

Control Engineering. [7,8,9]. 

A systematic methodology for linear 

design of lateral autopilot has been proposed 

in this paper. The objective of this 

methodology is to obtain the parameters 

from a set of parametric equations, 

performance measurement and the 

characteristic of the plant and the available 

actuator.  

The set of formulae usually derived 

are not obtainable to a unified design 

technique. In this paper we are using only 

one type of design problem. 

 Design Problem 

             Given missile parameters: 

            Actuator:  natural frequency 

(ωa), damping ratio (ξa). 

            Airframe and environment: ta, 

mη, σ2, ωb. 

 Design Specification: 

    Critical gain marginGM (a 

specified value of gain margin) 

    Critical phase marginPM (a 

specified value of phase margin) 
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Design Objective:  To obtain the 

control gains (Kp, Kq) for the maximum 

possible Gain   Crossover Frequency (GCF). 

The main contribution of the paper is: 

(i) t o study the forth order autopilot missile, 

(ii) Pole placement method for designing 

incomplete state feedback controller for 

linear missile autopilot system and (iii) to 

use the using Kharitnov’s method to obtain 

the range of some variables. 

2. DESIGN PARAMETER OF AN 

AUTOPILOT   
    The following figure depicts the 

block diagram of a two loop missile autopilot 

in pitch plane [1]. The missile state model is 

based upon the two loop configuration. 

Where, G1(s) and G2(s) are aerodynamic 

transfer function and G3(s) represents the 

second order actuator. 

 

 
Fig.1. Block diagram of two loop 

missile autopilot in pitch plane 

 
3. AUTOPILOT SYSTEM DESIGN 

PARAMETERS 

The autopilot system design 

parameters for the missile have been given in 

this table. Both the design situations are of 

problem above mentioned and two loop 

autopilot configuration is considered.   
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For case 1 we get- 
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Frequency domain - 

 

 Time response- 
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Discussion- Due to the presence of 

non minimum phase zero, the plots have 

been dripped in the negative Y axis. 

 Bode plot- 
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Gm = 7.18 dB (at 57.8 rad/sec) ,  Pm = 68.6 deg (at 11.7 rad/sec)
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Discussion- 

 
4. POLES ASSIGNMENT 

The pole-placement technique for the 

augmented plant model has been utilized to 

find the state feedback and integral gains in 

the absence of the observer. Denoting the 

chosen closed-loop pole locations as    

S 1,2 = – a ± jb (dominant poles),         

S 3,4= –c ± jd (faster poles), the 

desired characteristic equation is 

      S
4 

+ d3S
3 

+ d2S
2 

+ d1S + d0=0    

[from the equation 1+G(S)H(S)=0] 

Where,     
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Steps for determination of closed 

loop poles- 

Find a and c from the equation for the 

known value of actuator damping ratio ξa 
and natural frequency ωa. 

Compute b using the equation for 

chosen value of peak overshoot Mp. 

Select a suitable value for d. 
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By putting the values of a,b,c,d we 

can get d3,d2,d1 and d0 as 
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Once the state feedback control gains 

are known for a given set of aerodynamic 

data and actuator dynamics, the GM and PM 

of the designed autopilot can be evaluated by 

opening the autopilot loop in pitch plane 

using the resulting open loop transfer 

function- 
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Bode plot- 
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TABLE: 5  Frequency Domain 

Analysis of Incomplete State Feedback 

Controller- 

4. CONCLUSION        

The controller gains computed using 

exact formulae are valid for a class of 

cruciform tail-controlled missiles where the 

controlled variable is the lateral acceleration. 

A procedure for selection of autopilot closed 

loop poles has been developed, which can 

satisfy Gm and Pm specifications for a given 

set of autopilot system parameters. 

The incomplete SVF controller 

without fin-rate feedback eliminates the need 

for an observer system to provide estimation 

for the unavailable . The numerical 

example illustrated that a cost-effective 

design with a slower actuator might be 

achieved for the specified operating point 

using a modified SVF controller without 

implementation of fin position feedback. It is 

interesting to note that a closed loop actuator 

with feedback gain k1 produces a reduced 

speed of response in the closed-loop. 
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The gain crossover frequency of the 

incomplete SVF controller is greater than the 

GCF of the complete one.  
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