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Abstract A big parallel processing job can be delayed substantially as long as one of its many 

tasks is being assigned to an unreliable or congested machine. To tackle this so-called straggler 

problem, most parallel processing frameworks such as MapReduce have adopted various 

strategies under which the system may speculatively launch additional copies of the same task if 

its progress is abnormally slow when extra idling resource is available. In this proposed work, 

we focus on the design of speculative execution schemes for parallel processing clusters from an 

optimization perspective under different loading conditions. For the lightly loaded case, we 

analyze and propose one cloning scheme, namely, the Smart Cloning Algorithm (SCA) which is 

based on maximizing the overall system utility. We also derive the workload threshold under 

which SCA should be used for speculative execution. For the heavily loaded case, we propose 

the Enhanced Speculative Execution (ESE) algorithm which is an extension of the Microsoft 

Mantri scheme to mitigate stragglers. Our simulation results show SCA reduces the total job 

flowtime, i.e., the job delay/ response time by nearly 6% comparing to the speculative execution 

strategy of Microsoft Mantri. In addition, we show that the ESE Algorithm outperforms the 

Mantri baseline scheme by 71% in terms of the job flowtime while consuming the same amount 

of computationresource. 
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1. Introduction 

EMPIRICAL performancestudiesof large-

scale computing clusters have indicated that 

the completion time of a job [7] is often 

significantly and unnecessarily prolonged by 

one or a few so-called “stragglers” or 

straggling tasks, i.e., tasks which are 

unfortunately assigned to either a failing or 

overloaded server within a cluster of 

hundreds of thousands of commodity  

 

 

servers. To mitigate stragglers, recent big 

data frameworks such as the MapReduce 

system or its variants have adopted various 

preventive or reactive speculation strategies 

under which the system launches extra 

(backup) copies of a task on alternative 

machines in a judicious manner. In 

particular, there existtwo mainclasses of 

speculative executionstrategies, namely, the 
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Cloning approach [5] and the Straggler- 

Detection-based one [6], [7], [13], [16], 

[20], [32], [35], [41]. Under the Cloning 

approach, extra copies of a task are 

scheduled in parallel with the initial task as 

long as the computation cost of the task is 

expected to be low and the system resource 

is available. For the Straggler-

Detectionbased approach, the progress of 

each task is monitoredby the systemand 

backupcopiesare launched only when a 

straggler is detected.As one may expect, the 

cloning-based strategy is only suitable for a 

lightly loaded cluster as it launches the 

clones in a greedy, indiscriminately fashion. 

On the otherhand, the straggler-detection 

based strategy is bapplicableto both the 

lightly-loaded and heavily-loaded regimes 

but at the expense of extra system 

instrumentation and performance overhead 

as discussedin [10]. The situation is 

particularly challenging when the progress 

of a large number of tasks have to be 

tracked. However, previous works do not 

comparethe performance between these two 

different speculation approaches. 

Furthermore, most of the existing 

speculative execution schemes are based on 

simple heuristics and do not consider the 

optimization based on specific performance 

objectives. With the aforementioned 

observations in mind, in this work, we take a 

more systematic, optimization-based 

approach for the design and analysis of 

speculative execution schemes. Our 

objective is to optimize two performance 

metrics which are the total job delay/ 

response time (which is also referred as job 

flowtime) and the computation cost by 

defining a utility function. The optimizations 

are conducted by coordinating speculating 

with job scheduling, which is an 

opportunityto gainsignificant performance 

improvement compared to speculation-only 

policies. We also characterize the 

differences betweenthe Cloning approach 

and the Straggler-Detection based 

speculative execution scheme through both 

theoretical analysis and 

extensivesimulations. 

II Literature Survey 

Job scheduling in a MapReduce-like cluster 

In a big data processing cluster like 

MapReduce andits variantsor derivatives, 

different applications/ jobs need to share and 

compete for resources in the cluster. Thus, 

job scheduling plays a very important 

role.Throughout the whole work, we only 

consider the centralized scheduling 

paradigm under which a global 

schedulerofthe cluster 

managesalljobswhereeach job may consist 

of many small tasks. The scheduler allocates 

resources across jobs and also 

handlesstraggling tasks. Widely deployed 

schedulers to-date include the fair scheduler 

[4] and the capacity 

scheduler[3].However,the maingoalof these 

schedulers is to provide fair and efficient  

resource sharing among different 

organizations. As such, other key 

performance metrics such as the job 

response time have not received adequate 

considerations under their designs. To 

enhance system performance, the design of 

job schedulers for MapReduce-like systems 
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has been an active research area lately [11], 

[12], [23], [25], [36],[40], [42]. In particular, 

several works focus on deriving 

performance boundsforminimizing the 

totaljob completion time [11], [12], [40]. 

Tan et al. design the Coupling scheduler 

[36], which mitigates the starvation problem 

caused by reduce tasks in large jobs. It is 

well known in scheduling literature that the 

SRPT (ShortestRemaining Processing Time) 

scheduler is optimal for the overall flowtime 

on a single machine where there is one task 

per job. As such, some works extend the 

SRPT scheduler to minimize the total job 

flowtime under different settings [23], [25], 

[40], [42]. However, all of 

thesestudiesassumeaccurateknowledgeof 

task durations and hence do not support 

speculative copies to be 

scheduleddynamically. 

Speculative Execution Policies 

Severalspeculative executionstrategies 

havebeen proposedforMapReduce-like 

systems. The initial GoogleMapReduce 

system only beginsto launch backup tasks 

when a job is close to completion. It has 

been shown that speculative execution can 

decrease the job service time by nearly 44% 

[16]. This scheme is easy to implement but 

it would unnecessarily launch 

backupcopiesfortasksof normalprogress. The 

 speculativeexecution strategies in the initial 

versions of Hadoop [2] and Microsoft 

Dryad[20]closely followthatof the 

GoogleMapReducesystem.However, 

Zahariaet al. present a new strategy 

calledLATE (Longest Approximate Time to 

End) in [41] for the Hadoop-0.21 

implementation. It monitors the progress 

rate of eachtaskand estimatestheir remaining 

time to completion. Tasks with progress rate 

below certain threshold are chosen as 

backup candidates and the one with the 

longest remaining time is given the highest 

priority. The system also imposesa limit on 

the maximum number of backup tasks in the 

cluster. In contrast, Microsoft Mantri[7] 

proposes a new speculative execution 

strategy for Dryad in which the system 

estimates the remaining time to finish (i.e., 

trem), for each task and predicts the required 

service time of a relaunched copy of the task 

(i.e., tnew). Once a server becomes 

available, the Mantri system makes a 

decision on whether to launch a backup task 

based on the statistics of tremand tnew. 

Mantri would schedule a duplicate if the 

total computation cost is expected to 

decreasewhileit doesnot explorethe tradeoffs 

between the job completion time (flowtime) 

and the computation cost. To accurately and 

promptly identify stragglers, Chen et al. 

propose a Smart Speculative Execution 

strategy in [13] and Sun et al. present an 

Enhanced Self-Adaptive MapReduce 

Scheduling Algorithm in [35]. The main 

ideas of [13] include: i) use the 

exponentially weighted moving average to 

predict the process speed and compute the 

remaining time of a task and ii) determine 

which task to backupbased on the load of a 

cluster using a cost-benefit model. The 

limitation is that those works only focus on 

the optimization of task level rather than job 

level performance. Ananthanarayananet al. 

proposesto mitigatethe straggler problem by 
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cloning every small job and avoid the extra 

delay caused by the straggler monitoring/ 

detection process [5]. When most of the jobs 

in the system are small, the cloned copies 

only consume a small amount of additional 

resources. As an extension from [5], 

Ananthanarayanan further presents GRASS 

[6], which carefully adopts the Detection-

based approach to trim stragglers for 

approximation jobs. GRASS also provides a 

unified solution for normal jobs. Recently, 

Ren et al. propose Hopper [32], a 

speculation aware scheduler, which 

coordinates job scheduling with speculative 

execution. In Hopper, thescheduler allocates 

computing slots based on the virtual job 

size, which is larger than the actual size, and 

can immediately schedulea speculative 

copyoncea straggleris detected.For mostof 

the speculative execution schemes presented 

above, the speculation algorithms are 

designed independently of job scheduling. 

Hopper and the recently proposed 

SRPTMS+C [39] are the only exceptions. 

However, Hopper still has several 

downsides that can degrade the 

clusterperformance. Firstly,Hopperis non-

work- conserving: it is possible for its 

scheduler to keep a computingslotidleas a 

reservation fora future straggler while other 

jobs/ tasks already queue up for computation 

resource1. Secondly, the job size is 

computed/ estimated based on only the 

number of tasks instead of taking the 

product with the task service time(i.e. the 

time between the task is launched and the 

task is finished). In practice, the task service 

times have shown to be varying widely even 

among tasks of the same job. (e.g., a Map 

task vs. a Reduce task). As a comparison, in 

our work,  weincorporate the task service 

time when estimating the job size. 

Moreover, SRPTMS+Cis limitedto 

investigate the cloning 

approachonlywhereas the workin 

thisproposed work combines job scheduling 

with speculative execution and judiciously 

applies proactive cloning or reactive 

speculation under different operating 

regimes. Another body of work related to 

this workinvestigate a studyon the 

effectiveness of scheduling redundant copies 

from a queuing perspective. In particular, 

Vulimiriet al. characterize when a 

globalredundancy policyimproves latency 

performance of the whole system [38]. 

However, this work does not consider 

killing the unfinished copies of the same 

task. Chen et al. adoptsthe approach of 

redundant requests in storage codes and 

theoretically analyzes its optimality when 

the service time of each request is 

exponentially distributed [14]. Based on 

these works, Qiuet al. adopt the MAP model 

to represent task arrivals and study the 

distribution of task-response time when 

redundancy is applied[27]–
[30].Moreover,Kristenetal.presentin 

[17] anexact analysis of systems with 

redundancy when the service time for the 

redundant class follows an exponential 

distribution. Onefundamental limitation of 

[14], [17], [27]–[30] is that they do not 

theoretically characterize the efficiency of 

redundancy when the task service time 

follows a more general distribution. Besides 
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exponential distribution, [21] and 

[34] also analyze how different redundancy 

strategy can influence the latency and the 

computation cost when the job service time 

follows a heavy-everywhere or 

lighteverywhere distribution. However,their 

derived results do not hold when the service 

time followsotherhevay-tailed distributions 

(e.g.,the Pareto Distribution) and thus cannot 

be applied to our work. 

III. Proposed Work 

In this we propose the design of speculative 

execution schemes for parallel processing 

clusters from an optimization perspective 

under different loading conditions. For the 

lightly loaded case, we analyze and propose 

one cloning scheme, namely, the Smart 

Cloning Algorithm (SCA) which is based on 

maximizing the overall system utility. We 

also derive the workload threshold under 

which SCA should be used for speculative 

execution. For the heavily loaded case, we 

propose the Enhanced Speculative  

Execution (ESE) algorithm which is an 

extension of the Microsoft Mantri scheme to 

mitigate stragglers. Our simulation results 

show SCA reduces the total job flowtime, 

i.e., the job delay/ response time by nearly 

6% comparing to thespeculative 

execution strategy of Microsoft Mantri. In 

addition, we show that the ESE Algorithm 

outperforms the Mantri baseline scheme by 

71% in terms of the job flowtime while 

consuming the same amount of computation 

resource. 

IVMethodology 

Smart Cloning Algorithm (SCA):- 

The SCA algorithm consists of two separate 

parts. At the beginning of each time slot, we 

first schedule the remaining tasks of 

unfinished jobs and then check whether the 

computation resource is available. If it is 

available we will determine number of 

clones for each task. Otherwise, we will 

clone each task exactly once and sort the set 

of unscheduled jobs, according to the 

increasing order of the work load. 

 
Design details of ESE:- 

Our ESE Algorithm includes three 

scheduling levels. At the beginning of time 

slot l, the scheduler estimates the remaining 

time of each running task and puts the tasks 

whose remaining time satisfies the 

constraint of P3 in the backup candidateset. 

The scheduler then schedules the remaining 

tasks of the jobs which have already been 

scheduled but have not left the cluster yet 

this are set of unfinished jobs at time slot l 

and the jobs are sorted based on remaining 

workloads. Upon scheduling, the jobs which 

have smaller remaining workload are given 

the higher priorities. The number of 

available machines, i.e., N(l) is updated after 

the aforementioned scheduling and the 
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scheduler proceeds to allocate machines to 

these unscheduled jobs. To be specific, 

denote all the jobs that have not been 

scheduled yet where the jobs are sorted 

based on their non-decreasing order of 

workloads. The scheduler launches one copy 

for each task if there are available machines. 

 
V.Conclusion 

In our proposed work attempt to combine 

job scheduling and speculative execution for 

the design of redundancy algorithms in big 

data processing clusters. More importantly, 

we focus on two key performance metrics 

which are the average jobflowtime and the 

overall system computation costs. By 

utilizing the distribution information of the 

task service time, we build an optimization 

framework to maximize the overall system 

utility. We then design two approximation 

algorithms to tackle this optimization 

problem, i.e., the SCA Algorithm and ESE 

Algorithm, corresponding to the cloning-

based and detection-based approaches 

respectively. To differentiate the 

applicability of these two algorithms, we 

also categorize the cluster into the lightly 

loaded and heavily loaded cases and derive 

the cutoffthreshold for these two 

operatingregimes. 

Future Work: 

As future work, we will design speculative 

execution schemes for more complex jobs 

which can have additional task-dependency 

constraints. In addition, we plan to 

characterize the theoretical performance 

bounds of our proposed redundancy 

algorithms. 
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