

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 60

AUGMENTED HYPOTHETICALCLUSTER PROCESSING FOR BIG

DATA

D. SASI REDKHA
1
, DR. M. RUDRA KUMAR2

1
M.Tech.,Dept of CSE, Annamacharya Institute of Technology & Sciences, Rajampet, Kadapa.

2
Professor, Deptof CSE, Annamacharya Institute of Technology & Sciences, Rajampet, Kadapa.

Abstract A big parallel processing job can be delayed substantially as long as one of its many

tasks is being assigned to an unreliable or congested machine. To tackle this so-called straggler

problem, most parallel processing frameworks such as MapReduce have adopted various

strategies under which the system may speculatively launch additional copies of the same task if

its progress is abnormally slow when extra idling resource is available. In this proposed work,

we focus on the design of speculative execution schemes for parallel processing clusters from an

optimization perspective under different loading conditions. For the lightly loaded case, we

analyze and propose one cloning scheme, namely, the Smart Cloning Algorithm (SCA) which is

based on maximizing the overall system utility. We also derive the workload threshold under

which SCA should be used for speculative execution. For the heavily loaded case, we propose

the Enhanced Speculative Execution (ESE) algorithm which is an extension of the Microsoft

Mantri scheme to mitigate stragglers. Our simulation results show SCA reduces the total job

flowtime, i.e., the job delay/ response time by nearly 6% comparing to the speculative execution

strategy of Microsoft Mantri. In addition, we show that the ESE Algorithm outperforms the

Mantri baseline scheme by 71% in terms of the job flowtime while consuming the same amount

of computationresource.

Keywords:Job scheduling, speculative execution, cloning, straggler detection, optimization.

1. Introduction

EMPIRICAL performancestudiesof large-

scale computing clusters have indicated that

the completion time of a job [7] is often

significantly and unnecessarily prolonged by

one or a few so-called “stragglers” or

straggling tasks, i.e., tasks which are

unfortunately assigned to either a failing or

overloaded server within a cluster of

hundreds of thousands of commodity

servers. To mitigate stragglers, recent big

data frameworks such as the MapReduce

system or its variants have adopted various

preventive or reactive speculation strategies

under which the system launches extra

(backup) copies of a task on alternative

machines in a judicious manner. In

particular, there existtwo mainclasses of

speculative executionstrategies, namely, the

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 61

Cloning approach [5] and the Straggler-

Detection-based one [6], [7], [13], [16],

[20], [32], [35], [41]. Under the Cloning

approach, extra copies of a task are

scheduled in parallel with the initial task as

long as the computation cost of the task is

expected to be low and the system resource

is available. For the Straggler-

Detectionbased approach, the progress of

each task is monitoredby the systemand

backupcopiesare launched only when a

straggler is detected.As one may expect, the

cloning-based strategy is only suitable for a

lightly loaded cluster as it launches the

clones in a greedy, indiscriminately fashion.

On the otherhand, the straggler-detection

based strategy is bapplicableto both the

lightly-loaded and heavily-loaded regimes

but at the expense of extra system

instrumentation and performance overhead

as discussedin [10]. The situation is

particularly challenging when the progress

of a large number of tasks have to be

tracked. However, previous works do not

comparethe performance between these two

different speculation approaches.

Furthermore, most of the existing

speculative execution schemes are based on

simple heuristics and do not consider the

optimization based on specific performance

objectives. With the aforementioned

observations in mind, in this work, we take a

more systematic, optimization-based

approach for the design and analysis of

speculative execution schemes. Our

objective is to optimize two performance

metrics which are the total job delay/

response time (which is also referred as job

flowtime) and the computation cost by

defining a utility function. The optimizations

are conducted by coordinating speculating

with job scheduling, which is an

opportunityto gainsignificant performance

improvement compared to speculation-only

policies. We also characterize the

differences betweenthe Cloning approach

and the Straggler-Detection based

speculative execution scheme through both

theoretical analysis and

extensivesimulations.

II Literature Survey

Job scheduling in a MapReduce-like cluster

In a big data processing cluster like

MapReduce andits variantsor derivatives,

different applications/ jobs need to share and

compete for resources in the cluster. Thus,

job scheduling plays a very important

role.Throughout the whole work, we only

consider the centralized scheduling

paradigm under which a global

schedulerofthe cluster

managesalljobswhereeach job may consist

of many small tasks. The scheduler allocates

resources across jobs and also

handlesstraggling tasks. Widely deployed

schedulers to-date include the fair scheduler

[4] and the capacity

scheduler[3].However,the maingoalof these

schedulers is to provide fair and efficient

resource sharing among different

organizations. As such, other key

performance metrics such as the job

response time have not received adequate

considerations under their designs. To

enhance system performance, the design of

job schedulers for MapReduce-like systems

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 62

has been an active research area lately [11],

[12], [23], [25], [36],[40], [42]. In particular,

several works focus on deriving

performance boundsforminimizing the

totaljob completion time [11], [12], [40].

Tan et al. design the Coupling scheduler

[36], which mitigates the starvation problem

caused by reduce tasks in large jobs. It is

well known in scheduling literature that the

SRPT (ShortestRemaining Processing Time)

scheduler is optimal for the overall flowtime

on a single machine where there is one task

per job. As such, some works extend the

SRPT scheduler to minimize the total job

flowtime under different settings [23], [25],

[40], [42]. However, all of

thesestudiesassumeaccurateknowledgeof

task durations and hence do not support

speculative copies to be

scheduleddynamically.

Speculative Execution Policies

Severalspeculative executionstrategies

havebeen proposedforMapReduce-like

systems. The initial GoogleMapReduce

system only beginsto launch backup tasks

when a job is close to completion. It has

been shown that speculative execution can

decrease the job service time by nearly 44%

[16]. This scheme is easy to implement but

it would unnecessarily launch

backupcopiesfortasksof normalprogress. The

 speculativeexecution strategies in the initial

versions of Hadoop [2] and Microsoft

Dryad[20]closely followthatof the

GoogleMapReducesystem.However,

Zahariaet al. present a new strategy

calledLATE (Longest Approximate Time to

End) in [41] for the Hadoop-0.21

implementation. It monitors the progress

rate of eachtaskand estimatestheir remaining

time to completion. Tasks with progress rate

below certain threshold are chosen as

backup candidates and the one with the

longest remaining time is given the highest

priority. The system also imposesa limit on

the maximum number of backup tasks in the

cluster. In contrast, Microsoft Mantri[7]

proposes a new speculative execution

strategy for Dryad in which the system

estimates the remaining time to finish (i.e.,

trem), for each task and predicts the required

service time of a relaunched copy of the task

(i.e., tnew). Once a server becomes

available, the Mantri system makes a

decision on whether to launch a backup task

based on the statistics of tremand tnew.

Mantri would schedule a duplicate if the

total computation cost is expected to

decreasewhileit doesnot explorethe tradeoffs

between the job completion time (flowtime)

and the computation cost. To accurately and

promptly identify stragglers, Chen et al.

propose a Smart Speculative Execution

strategy in [13] and Sun et al. present an

Enhanced Self-Adaptive MapReduce

Scheduling Algorithm in [35]. The main

ideas of [13] include: i) use the

exponentially weighted moving average to

predict the process speed and compute the

remaining time of a task and ii) determine

which task to backupbased on the load of a

cluster using a cost-benefit model. The

limitation is that those works only focus on

the optimization of task level rather than job

level performance. Ananthanarayananet al.

proposesto mitigatethe straggler problem by

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 63

cloning every small job and avoid the extra

delay caused by the straggler monitoring/

detection process [5]. When most of the jobs

in the system are small, the cloned copies

only consume a small amount of additional

resources. As an extension from [5],

Ananthanarayanan further presents GRASS

[6], which carefully adopts the Detection-

based approach to trim stragglers for

approximation jobs. GRASS also provides a

unified solution for normal jobs. Recently,

Ren et al. propose Hopper [32], a

speculation aware scheduler, which

coordinates job scheduling with speculative

execution. In Hopper, thescheduler allocates

computing slots based on the virtual job

size, which is larger than the actual size, and

can immediately schedulea speculative

copyoncea straggleris detected.For mostof

the speculative execution schemes presented

above, the speculation algorithms are

designed independently of job scheduling.

Hopper and the recently proposed

SRPTMS+C [39] are the only exceptions.

However, Hopper still has several

downsides that can degrade the

clusterperformance. Firstly,Hopperis non-

work- conserving: it is possible for its

scheduler to keep a computingslotidleas a

reservation fora future straggler while other

jobs/ tasks already queue up for computation

resource1. Secondly, the job size is

computed/ estimated based on only the

number of tasks instead of taking the

product with the task service time(i.e. the

time between the task is launched and the

task is finished). In practice, the task service

times have shown to be varying widely even

among tasks of the same job. (e.g., a Map

task vs. a Reduce task). As a comparison, in

our work, weincorporate the task service

time when estimating the job size.

Moreover, SRPTMS+Cis limitedto

investigate the cloning

approachonlywhereas the workin

thisproposed work combines job scheduling

with speculative execution and judiciously

applies proactive cloning or reactive

speculation under different operating

regimes. Another body of work related to

this workinvestigate a studyon the

effectiveness of scheduling redundant copies

from a queuing perspective. In particular,

Vulimiriet al. characterize when a

globalredundancy policyimproves latency

performance of the whole system [38].

However, this work does not consider

killing the unfinished copies of the same

task. Chen et al. adoptsthe approach of

redundant requests in storage codes and

theoretically analyzes its optimality when

the service time of each request is

exponentially distributed [14]. Based on

these works, Qiuet al. adopt the MAP model

to represent task arrivals and study the

distribution of task-response time when

redundancy is applied[27]–
[30].Moreover,Kristenetal.presentin

[17] anexact analysis of systems with

redundancy when the service time for the

redundant class follows an exponential

distribution. Onefundamental limitation of

[14], [17], [27]–[30] is that they do not

theoretically characterize the efficiency of

redundancy when the task service time

follows a more general distribution. Besides

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 64

exponential distribution, [21] and

[34] also analyze how different redundancy

strategy can influence the latency and the

computation cost when the job service time

follows a heavy-everywhere or

lighteverywhere distribution. However,their

derived results do not hold when the service

time followsotherhevay-tailed distributions

(e.g.,the Pareto Distribution) and thus cannot

be applied to our work.

III. Proposed Work

In this we propose the design of speculative

execution schemes for parallel processing

clusters from an optimization perspective

under different loading conditions. For the

lightly loaded case, we analyze and propose

one cloning scheme, namely, the Smart

Cloning Algorithm (SCA) which is based on

maximizing the overall system utility. We

also derive the workload threshold under

which SCA should be used for speculative

execution. For the heavily loaded case, we

propose the Enhanced Speculative

Execution (ESE) algorithm which is an

extension of the Microsoft Mantri scheme to

mitigate stragglers. Our simulation results

show SCA reduces the total job flowtime,

i.e., the job delay/ response time by nearly

6% comparing to thespeculative

execution strategy of Microsoft Mantri. In

addition, we show that the ESE Algorithm

outperforms the Mantri baseline scheme by

71% in terms of the job flowtime while

consuming the same amount of computation

resource.

IVMethodology

Smart Cloning Algorithm (SCA):-

The SCA algorithm consists of two separate

parts. At the beginning of each time slot, we

first schedule the remaining tasks of

unfinished jobs and then check whether the

computation resource is available. If it is

available we will determine number of

clones for each task. Otherwise, we will

clone each task exactly once and sort the set

of unscheduled jobs, according to the

increasing order of the work load.

Design details of ESE:-

Our ESE Algorithm includes three

scheduling levels. At the beginning of time

slot l, the scheduler estimates the remaining

time of each running task and puts the tasks

whose remaining time satisfies the

constraint of P3 in the backup candidateset.

The scheduler then schedules the remaining

tasks of the jobs which have already been

scheduled but have not left the cluster yet

this are set of unfinished jobs at time slot l

and the jobs are sorted based on remaining

workloads. Upon scheduling, the jobs which

have smaller remaining workload are given

the higher priorities. The number of

available machines, i.e., N(l) is updated after

the aforementioned scheduling and the

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 65

scheduler proceeds to allocate machines to

these unscheduled jobs. To be specific,

denote all the jobs that have not been

scheduled yet where the jobs are sorted

based on their non-decreasing order of

workloads. The scheduler launches one copy

for each task if there are available machines.

V.Conclusion

In our proposed work attempt to combine

job scheduling and speculative execution for

the design of redundancy algorithms in big

data processing clusters. More importantly,

we focus on two key performance metrics

which are the average jobflowtime and the

overall system computation costs. By

utilizing the distribution information of the

task service time, we build an optimization

framework to maximize the overall system

utility. We then design two approximation

algorithms to tackle this optimization

problem, i.e., the SCA Algorithm and ESE

Algorithm, corresponding to the cloning-

based and detection-based approaches

respectively. To differentiate the

applicability of these two algorithms, we

also categorize the cluster into the lightly

loaded and heavily loaded cases and derive

the cutoffthreshold for these two

operatingregimes.

Future Work:

As future work, we will design speculative

execution schemes for more complex jobs

which can have additional task-dependency

constraints. In addition, we plan to

characterize the theoretical performance

bounds of our proposed redundancy

algorithms.

Reference

1. Residual lives, hazard rates, and

longtails.

2. Apache.

http://hadoop.apache.org,2013.

3. Capacity Scheduler.

http://hadoop.apache.org/

docs/r1.2.1/capacity scheduler.html,2013.

4. Fair

Scheduler.http://hadoop.apache.org/docs/r1.

2.1/fairscheduler.html,2013.

5. G. Ananthanarayanan, A. Ghodsi, S.

Shenker, and I. Stoica. Effective straggler

mitigation: Attack of the clones. In NSDI,

April 2013.

6. G. Ananthanarayanan, M. C.-C.

Hung, X. Ren, and I. Stoica. Grass:

Trimming stragglers in approximation

analytics. In NSDI, April2014.

7. G. Ananthanarayanan, S. Kandula,

A. Greenberg, I. Stoic, Y. Lu, B. Saha, and

E. Harris. Reining in the outliers in

MapReduce clusters using mantri. In

USENIX OSDI, Vancouver, Canada,

October2010.

8. D. P. Bertsekas. Nonlinear

Programming: 2nd Edition. Athena

Scientific,1999.

9. [9] S. Boyd, N. Parikh, E. Chu, B.

Volume 02, Issue 01, Jan 2018 ISSN 2581 – 4575 Page 66

Peleato, and J. Eckstein. Distributed

optimization and statistical learning via the

alternating direction method of multipliers.

Foundations and Trends® in Machine

Learning, 4:1–122, January2011.

10. D. Breitgand, R. Cohen, A. Nahir,

and D. Raz. On cost-aware monitoring for

self- adaptive load sharing. IEEE JSAC,

28(1):70–83, January2010.

11.H.Chang,M.Kodialam,R.R.Kompella,T.

V. Lakshman, M. Lee, and S. Mukherjee.

Scheduling in MapReduce-like systems for

fast completion time. In Proceedings of

IEEE Infocom, pages 3074–3082,

March2011.

12. F. Chen, M. Kodialam, and T.

Lakshman. Joint scheduling of processing

and shuffle phases in MapReduce systems.

In Proceedings of IEEE Infocom,

March2012.

13. Q. Chen, C. Liu, and Z. Xiao.

Improving MapReduce performance using

smartspeculative execution strategy. IEEE

Transactions on Computers, 63(4), April

2014.

14. S. Chen, Y. Sun, U. C. Kozat, L.

Huang, P. Sinha, G. Liang, X. Liu, and N. B.

Shroff. When queueing meets coding:

Optimal- latency data retrieving scheme in

storage clouds. In Infocom, April2014.

15. R. B. Cooper. Introduction to

queuing theory. The Macmillan Company,

New York,1972.

16. J. Dean and S. Ghemawat.

MapReduce: simplified data processing on

large clusters. In OSDI, pages 137–150,

December2004.

17. K. Gardner, S. Zbarsky, S. Doroudi,

M. Harchol-Balter, and E. H. Aalto.

Reducing latency via redundant requests:

Exact analysis. pages 347–360. ACM

SIGMETRICS, June2015.

18. M. Harchol-Balter. Performance

Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge

University Press, 2013.

19. M. Hong and Z.-Q. Luo. On the

linearconvergence of the alternatingdirection

method of multipliers. In arXiv:1208.3922,

August 2012.

	D. SASI REDKHA1, DR. M. RUDRA KUMAR2

