

Volume 04, Issue 05, May 2020 ISSN 2581 – 4575 Page 141

EFFICIENTLY MINING FREQUENT ITEMSETS ON MASSIVE DATA
1
 K.SIDDHARTHA,

2
P.SRINIVAS

1
Student, Department of Computer Science and Engineering, Kakatiya Institute of Technology & Science,

Warangal, T.S,India.
2
Faculty, Department of Computer Science and Engineering, Kakatiya Institute of Technology & Science,

Warangal, T.S,India.

ABSTRACT:

Frequent itemset mining is an important operation to return all itemsets in the transaction table,

which occur as a subset of at least a specified fraction of the transactions. The existing

algorithms cannot compute frequent itemsets on massive data efficiently, since they either

require multiple-pass scans on the table, or construct complex data structures which normally

exceed the available memory on massive data. This paper proposes a novel precomputation-

based PFIM algorithm to compute the frequent itemsets quickly on massive data. PFIM treats the

transaction table as two parts: the large old table storing historical data and the relatively small

new table storing newly generated data. PFIM first pre-constructs the quasifrequent itemsets on

the old table whose supports are above the lower-bound of the practical support level. Given the

specified support threshold, PFIM can quickly return the required frequent itemsets on the table

by utilizing the quasi-frequent itemsets. Three pruning rules are presented to reduce the size of

the involved candidates. An incremental update strategy is devised to efficiently re-construct the

quasi-frequent itemsets when the tables are merged. The extensive experimental results,

conducted on synthetic and real-life data sets, show that PFIM has a significant advantage over

the existing algorithms and runs two orders of magnitude faster than the latest algorithm..

I.INTRODUCTION

FREQUENT itemset mining is an important

operation that has been widely studied in

many practical applications, such as data

mining [1]–[3], software bug detection [4],

spatiotemporal data analysis and biological

analysis [5]. Given a transaction table, in

which each transaction contains a set of

items, frequent itemset mining returns all

sets of items whose frequencies (also

referred to as support of the set of items) in

the table are above a given threshold. Due to

its practical importance, since firstly

proposed in [6], frequent itemset mining has

received extensive attentions and many

algorithms are proposed [7]–[9]. The

existing frequent itemset mining algorithms

can be classified into two groups: candidate-

generation-based algorithms [10]–[14] and

pattern-growth-based algorithms [15]– [17].

The candidate-generation-based algorithms

first generate candidate itemsets and these

candidates are validated against the

transaction table to identify frequent

Volume 04, Issue 05, May 2020 ISSN 2581 – 4575 Page 142

itemsets. The anti-monotone property is

utilized in candidate-generationbased

algorithms to prune search space. But the

candidate generation-based algorithms

require multiple-pass table scans and this

will incur a high I/O cost on massive data.

The pattern-growth-based algorithms do not

generate candidates explicitly. They

construct the special tree-based data

structures to keep the essential information

about the frequent itemsets of the transaction

table. By use of the constructed data

structures, the frequent itemsets can be

computed efficiently. However, pattern-

growth-based algorithms have the problem

that the constructed data structures are

complex and usually exceed the available

memory on massive data. To sum up, the

existing algorithms cannot compute frequent

itemsets on massive data efficiently. In

frequent itemset mining, the number of the

frequent itemsets normally is sensitive to the

value of the support threshold. If the support

threshold is small, there will be a large

number of frequent itemsets and it is

difficult for the users to make efficient

decisions. On the contrary, if the support

threshold is large, it is possible that no

frequent itemsets can be discovered or the

interesting itemsets may be missed.

Therefore, a proper support threshold is

crucial for the practical frequent itemset

mining and the users often need to perform

frequent itemset mining for several times

before the satisfactory support threshold is

determined. The process often is interactive.

On massive data, the existing algorithms

often need a long execution time to compute

frequent itemsets and this will affect users’
working efficiency seriously [18]. The focus

of this paper is to find a new efficient

algorithm to compute frequent itemsets on

massive data quickly. One useful trick,

which is adopted to speed up the execution

in the existing algorithms, is to reuse the

work done in the counting operation of the

shorter itemsets for that of the longer

itemsets. In this paper, we want to utilize

this reuse idea to a much larger degree. In

typical massive data applications, with the

increasing data volume and the disk I/O

bottleneck, data usually is stored in

read/append-only mode [19]. Therefore, the

overall data set can be divided into two

parts: the much larger old data set storing

the historical data, and the relative small

new data set storing the newly generated

data. Based on the description above, this

paper devises a new PFIM algorithm

(Precomputationbased Frequent Itemset

Mining algorithm) on massive data, which

utilizes the pre-constructed frequent itemsets

on the old data set to return the frequent

itemsets quickly. Since the too small value

of support threshold will generate too many

frequent itemsets, we assume in this paper

that there exists a lower-bound ω of the
support threshold specified by the users in

practical applications. Because of the

real/appendonly mode, given the old table

TO, PFIM first pre-constructs the frequent

itemsets (refer to as quasi-frequent itemsets

in this paper) whose supports are no less

than ω. The new transactions are
accumulated in the new table T∆. Taking
advantage of the pre-constructed quasi-

Volume 04, Issue 05, May 2020 ISSN 2581 – 4575 Page 143

frequent itemsts, given the specified support

threshold, PFIM can compute the frequent

itemsets on TO ∪ T∆ quickly. In the process
of execution of PFIM, three pruning rules

are devised in this paper to reduce the

number of candidate frequent itemsets. An

incremental update strategy is proposed in

this paper to quickly update the quasi-

frequent itemsets when TO and T∆ are
merged. The extensive experiments are

conducted on synthetic and real-life data

sets. The experimental results show that,

PFIM outperforms the existing algorithms

significantly, it runs two orders of

magnitude faster than the latest algorithm..

II.EXISTING SYSTEM:

 The existing algorithms for frequent

itemset mining can be divided into two

groups mainly: candidate-generation-

based algorithms and pattern-growth-

based algorithms. This section will

review the two kinds of algorithms

respectively.

 The existing algorithms cannot compute

frequent itemsets on massive data

efficiently, since they either require

multiple-pass scans on the table or

construct complex data structures which

normally exceed the available memory

on massive data.

III.PROPOSED SYSTEM:

 This paper proposes a novel

precomputation-based frequent itemset

mining (PFIM) algorithm to compute the

frequent itemsets quickly on massive data.

PFIM treats the transaction table as two

parts: the large old table storing historical

data and the relatively small new table

storing newly generated data. PFIM first

pre-constructs the quasi-frequent itemsets on

the old table whose supports are above the

lower-bound of the practical support level.

Given the specified support threshold, PFIM

can quickly return the required frequent

itemsets on the table by utilizing the quasi-

frequent itemsets. Three pruning rules are

presented to reduce the size of the involved

candidates. An incremental update strategy

is devised to efficiently re-construct the

quasi-frequent itemsets when the tables are

merged. The extensive experimental results,

conducted on synthetic and real-life data

sets, show that PFIM has a significant

advantage over the existing algorithms and

runs two orders of magnitude faster than the

latest algorithm

IV.IMPLEMENTATION

 Admin

In this module, the Admin has to

login by using valid user name and

password. After login successful he

can perform some operations such as

view and authorize users, Adding

Categories Sub-Categories, Adding

Product Posts for by Selecting

Category and Sub-Categories,

Viewing Top- K Utility Item Set

Keywords, Viewing all Products in

terms of Construction of UP-Tree,

Viewing all High Utility Item set

Mining Products, Viewing All User

Search History and Finding Top K

Products Results in Chart.

Volume 04, Issue 05, May 2020 ISSN 2581 – 4575 Page 144

Viewing and Authorizing Users:

In this module, the admin views all

users details and authorize them for

login permission. User Details such

as User Name, Address, Email Id

and Mobile Number.

Add Categories, Sub-Categories

and Product Posts:

In this module, the admin adds

Categories, Sub-Categories and

Product Posts. The Product Posts are

added by selecting particular

category and Sub-Category and

Product Details such as, Product

Title, Price, Description and Image

of that Product.

View all Products with Ranks and

Comments:

In this module, the admin can see all

the uploaded products with product

ranks and comments. The Product

details contain Product title,

description, price, and image.

The Comment details include

commented user, their comment and

the date of comment.

User

In this module, there are n numbers of users

are present. User should register before

performing any operations. Once user

registers, their details will be stored to the

database. After registration successful, he

has to login by using authorized user name

and password. Once Login is successful user

can perform some operations like viewing

their profile details, searching for products

based on product description, searching

products and viewing them in a UP-Tree

Format, Viewing Own Search History and

Finding Top K Product Item Sets by

selecting category and Top K Value.

Viewing Profile Details:

In this module, the user can see their own

profile details, such as their address, email,

mobile number, profile Image.

Search Products:

In this, the user search for products based on

product description. The matched results

will be displayed in two ways: Exact

Matched and Related Products. Related

Products are the products which are not

exactly matched for user entered keyword

and they are belong to the same category of

exactly matched products category.

Search and View Products in UP-Tree

Format:

In this, the user search for products based on

product description and the matched

products will display in a UP-Tree Format.

In a Tree there would be three layers. In a

first top layer the Category name and in a

second layer the Sub-Category Name and in

a last layer the Product Title would be

shown and user can see the product details

by clicking on product name.

V.CONCLUSION

This paper considers the problem of computing

frequent itemsets on massive data. It is found that

the existing algorithms cannot perform frequent

itemset mining on massive data efficiently. This

paper utilizes the idea of reusing the work done

previously and devises a precomputation-based

PFIM algorithm to quickly acquire the frequent

itemsets on massive data. The transaction table

consists of two part: the large old table and the

Volume 04, Issue 05, May 2020 ISSN 2581 – 4575 Page 145

relatively small new table. By the quasi-frequent

itemsets pre-computed on the old table, PFIM can

report the frequent itemsets on massive data

efficiently. Three pruning rules are proposed in this

paper to speed up the execution of PFIM. The

incremental update strategy is presented to re-

construct the quasi-frequent itemsets quickly when

merging the old table and the new table. The

extensive experimental results show that PFIM has

a significant performance advantage over the

existing algorithms.

VI.REFERENCE

[1] A. Ceglar and J.F. Roddick, “Association

mining,” ACM Comput. Surv., 38(2):5,

2006.

 [2] H. Cheng, X. Yan, J. Han, and P.S. Yu,

“Direct discriminative pattern mining for

effective classification,” in Proceedings of

the 24th International Conference on Data

Engineering, April 7-12, 2008, pp. 169–178.

[3] H. Wang, W. Wang, J. Yang, and P.S.

Yu, “Clustering by pattern similarity in large

data sets,” in Proceedings of the 2002 ACM

SIGMOD International Conference on

Management of Data, June 3-6, 2002, pp.

394–405.

[4] Z. Li and Y. Zhou, “Pr-miner:

automatically extracting implicit

programming rules and detecting violations

in large software code,” in Proceedings of

the 10th European Software Engineering

Conference held jointly with 13th ACM

SIGSOFT International Symposium on

Foundations of Software Engineering,

September 5-9, 2005, pp. 306–315.

 [5] J.T.L. Wang, M.J. Zaki, H. Toivonen,

and D.E. Shasha, editors. ”Data Mining in

Bioinformatics,” Springer, 2005.

 [6] R. Agrawal, T. Imielinski, and A.N.

Swami, “Database mining: A performance

perspective,” IEEE Trans. Knowl. Data

Eng., vol. 5, no. 6, pp.914– 925, 1993.

 [7] C.C. Aggarwal, “Data Mining - The

Textbook,” Springer, 2015.

[8] C.C. Aggarwal and J. Han, editors,

“Frequent Pattern Mining,” Springer, 2014.

 [9] J. Han, H. Cheng, D. Xin, and X. Yan,

“Frequent pattern mining: current status and

future directions,” Data Min. Knowl.

Discov., vol. 15, no. 1, pp.55–86, 2007.

 [10] R. Agrawal, T. Imielinski, and A.N.

Swami, “Mining association rules between

sets of items in large databases,” in

Proceedings of the 1993 ACM SIGMOD

International Conference on Management of

Data, 1993, pp. 207–216.

 [11] R. Agrawal and R. Srikant, “Fast

algorithms for mining association rules in

large databases,” in VLDB’94, Proceedings

of 20th International Conference on Very

Large Data Bases, 1994, pp. 487–499.

 [12] A. Savasere, E. Omiecinski, and S.B.

Navathe, “An efficient algorithm for mining

association rules in large databases,” in

VLDB’95, Proceedings of21th International

Conference on Very Large Data Bases, 1995,

pp. 432– 444.

 [13] M.J. Zaki, “Scalable algorithms for

association mining,” IEEE Trans. Knowl.

Data Eng., vol. 12, no. 3, pp.372–390, 2000.

[14] M.J. Zaki and K. Gouda, “Fast vertical

mining using diffsets,” in Proceedings of the

Ninth ACM SIGKDD International

Conference on Knowledge Discovery and

Data Mining, 2003, pp. 326–335.

Volume 04, Issue 05, May 2020 ISSN 2581 – 4575 Page 146

 [15] G. Grahne and J. Zhu, “Fast algorithms

for frequent itemset mining using fp-trees,”

IEEE Trans. Knowl. Data Eng., vol. 17, no.

10, pp.1347–1362, 2005.

