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ABSTRACT: 

Frequent itemset mining is an important operation to return all itemsets in the transaction table, 

which occur as a subset of at least a specified fraction of the transactions. The existing 

algorithms cannot compute frequent itemsets on massive data efficiently, since they either 

require multiple-pass scans on the table, or construct complex data structures which normally 

exceed the available memory on massive data. This paper proposes a novel precomputation-

based PFIM algorithm to compute the frequent itemsets quickly on massive data. PFIM treats the 

transaction table as two parts: the large old table storing historical data and the relatively small 

new table storing newly generated data. PFIM first pre-constructs the quasifrequent itemsets on 

the old table whose supports are above the lower-bound of the practical support level. Given the 

specified support threshold, PFIM can quickly return the required frequent itemsets on the table 

by utilizing the quasi-frequent itemsets. Three pruning rules are presented to reduce the size of 

the involved candidates. An incremental update strategy is devised to efficiently re-construct the 

quasi-frequent itemsets when the tables are merged. The extensive experimental results, 

conducted on synthetic and real-life data sets, show that PFIM has a significant advantage over 

the existing algorithms and runs two orders of magnitude faster than the latest algorithm.. 

I.INTRODUCTION 

FREQUENT itemset mining is an important 

operation that has been widely studied in 

many practical applications, such as data 

mining [1]–[3], software bug detection [4], 

spatiotemporal data analysis and biological 

analysis [5]. Given a transaction table, in 

which each transaction contains a set of 

items, frequent itemset mining returns all 

sets of items whose frequencies (also 

referred to as support of the set of items) in 

the table are above a given threshold. Due to 

its practical importance, since firstly 

proposed in [6], frequent itemset mining has 

received extensive attentions and many 

algorithms are proposed [7]–[9]. The 

existing frequent itemset mining algorithms 

can be classified into two groups: candidate-

generation-based algorithms [10]–[14] and 

pattern-growth-based algorithms [15]– [17]. 

The candidate-generation-based algorithms 

first generate candidate itemsets and these 

candidates are validated against the 

transaction table to identify frequent 
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itemsets. The anti-monotone property is 

utilized in candidate-generationbased 

algorithms to prune search space. But the 

candidate generation-based algorithms 

require multiple-pass table scans and this 

will incur a high I/O cost on massive data. 

The pattern-growth-based algorithms do not 

generate candidates explicitly. They 

construct the special tree-based data 

structures to keep the essential information 

about the frequent itemsets of the transaction 

table. By use of the constructed data 

structures, the frequent itemsets can be 

computed efficiently. However, pattern-

growth-based algorithms have the problem 

that the constructed data structures are 

complex and usually exceed the available 

memory on massive data. To sum up, the 

existing algorithms cannot compute frequent 

itemsets on massive data efficiently. In 

frequent itemset mining, the number of the 

frequent itemsets normally is sensitive to the 

value of the support threshold. If the support 

threshold is small, there will be a large 

number of frequent itemsets and it is 

difficult for the users to make efficient 

decisions. On the contrary, if the support 

threshold is large, it is possible that no 

frequent itemsets can be discovered or the 

interesting itemsets may be missed. 

Therefore, a proper support threshold is 

crucial for the practical frequent itemset 

mining and the users often need to perform 

frequent itemset mining for several times 

before the satisfactory support threshold is 

determined. The process often is interactive. 

On massive data, the existing algorithms 

often need a long execution time to compute 

frequent itemsets and this will affect users’ 
working efficiency seriously [18]. The focus 

of this paper is to find a new efficient 

algorithm to compute frequent itemsets on 

massive data quickly. One useful trick, 

which is adopted to speed up the execution 

in the existing algorithms, is to reuse the 

work done in the counting operation of the 

shorter itemsets for that of the longer 

itemsets. In this paper, we want to utilize 

this reuse idea to a much larger degree. In 

typical massive data applications, with the 

increasing data volume and the disk I/O 

bottleneck, data usually is stored in 

read/append-only mode [19]. Therefore, the 

overall data set can be divided into two 

parts: the much larger old data set storing 

the historical data, and the relative small 

new data set storing the newly generated 

data. Based on the description above, this 

paper devises a new PFIM algorithm 

(Precomputationbased Frequent Itemset 

Mining algorithm) on massive data, which 

utilizes the pre-constructed frequent itemsets 

on the old data set to return the frequent 

itemsets quickly. Since the too small value 

of support threshold will generate too many 

frequent itemsets, we assume in this paper 

that there exists a lower-bound ω of the 
support threshold specified by the users in 

practical applications. Because of the 

real/appendonly mode, given the old table 

TO, PFIM first pre-constructs the frequent 

itemsets (refer to as quasi-frequent itemsets 

in this paper) whose supports are no less 

than ω. The new transactions are 
accumulated in the new table T∆. Taking 
advantage of the pre-constructed quasi-
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frequent itemsts, given the specified support 

threshold, PFIM can compute the frequent 

itemsets on TO ∪ T∆ quickly. In the process 
of execution of PFIM, three pruning rules 

are devised in this paper to reduce the 

number of candidate frequent itemsets. An 

incremental update strategy is proposed in 

this paper to quickly update the quasi-

frequent itemsets when TO and T∆ are 
merged. The extensive experiments are 

conducted on synthetic and real-life data 

sets. The experimental results show that, 

PFIM outperforms the existing algorithms 

significantly, it runs two orders of 

magnitude faster than the latest algorithm..  

II.EXISTING SYSTEM: 

 The existing algorithms for frequent 

itemset mining can be divided into two 

groups mainly: candidate-generation-

based algorithms and pattern-growth-

based algorithms. This section will 

review the two kinds of algorithms 

respectively. 

 The existing algorithms cannot compute 

frequent itemsets on massive data 

efficiently, since they either require 

multiple-pass scans on the table or 

construct complex data structures which 

normally exceed the available memory 

on massive data. 

III.PROPOSED SYSTEM: 

 This paper proposes a novel 

precomputation-based frequent itemset 

mining (PFIM) algorithm to compute the 

frequent itemsets quickly on massive data. 

PFIM treats the transaction table as two 

parts: the large old table storing historical 

data and the relatively small new table 

storing newly generated data. PFIM first 

pre-constructs the quasi-frequent itemsets on 

the old table whose supports are above the 

lower-bound of the practical support level. 

Given the specified support threshold, PFIM 

can quickly return the required frequent 

itemsets on the table by utilizing the quasi-

frequent itemsets. Three pruning rules are 

presented to reduce the size of the involved 

candidates. An incremental update strategy 

is devised to efficiently re-construct the 

quasi-frequent itemsets when the tables are 

merged. The extensive experimental results, 

conducted on synthetic and real-life data 

sets, show that PFIM has a significant 

advantage over the existing algorithms and 

runs two orders of magnitude faster than the 

latest algorithm 

IV.IMPLEMENTATION 

 Admin 

In this module, the Admin has to 

login by using valid user name and 

password. After login successful he 

can perform some operations such as 

view and authorize users, Adding 

Categories Sub-Categories, Adding 

Product Posts for by Selecting 

Category and Sub-Categories, 

Viewing Top- K Utility Item Set 

Keywords, Viewing all Products in 

terms of Construction of UP-Tree, 

Viewing all High Utility Item set 

Mining Products, Viewing All User 

Search History and Finding Top K 

Products Results in Chart. 
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Viewing and Authorizing Users: 

In this module, the admin views all 

users details and authorize them for 

login permission. User Details such 

as User Name, Address, Email Id 

and Mobile Number. 

Add Categories, Sub-Categories 

and Product Posts: 

In this module, the admin adds 

Categories, Sub-Categories and 

Product Posts. The Product Posts are 

added by selecting particular 

category and Sub-Category and 

Product Details such as, Product 

Title, Price, Description and Image 

of that Product. 

View all Products with Ranks and 

Comments: 

In this module, the admin can see all 

the uploaded products with product 

ranks and comments. The Product 

details contain Product title, 

description, price, and image. 

The Comment details include 

commented user, their comment and 

the date of comment. 

 

User 

In this module, there are n numbers of users 

are present. User should register before 

performing any operations. Once user 

registers, their details will be stored to the 

database.  After registration successful, he 

has to login by using authorized user name 

and password. Once Login is successful user 

can perform some operations like viewing 

their profile details, searching for products 

based on product description, searching 

products and viewing them in a UP-Tree 

Format, Viewing Own Search History and 

Finding Top K Product Item Sets by 

selecting category and Top K Value. 

Viewing Profile Details: 

In this module, the user can see their own 

profile details, such as their address, email, 

mobile number, profile Image. 

Search Products: 

In this, the user search for products based on 

product description. The matched results 

will be displayed in two ways: Exact 

Matched and Related Products. Related 

Products are the products which are not 

exactly matched for user entered keyword 

and they are belong to the same category of 

exactly matched products category. 

Search and View Products in UP-Tree 

Format: 

In this, the user search for products based on 

product description and the matched 

products will display in a UP-Tree Format. 

In a Tree there would be three layers. In a 

first top layer the Category name and in a 

second layer the Sub-Category Name and in 

a last layer the Product Title would be 

shown and user can see the product details 

by clicking on product name.  

V.CONCLUSION 

This paper considers the problem of computing 

frequent itemsets on massive data. It is found that 

the existing algorithms cannot perform frequent 

itemset mining on massive data efficiently. This 

paper utilizes the idea of reusing the work done 

previously and devises a precomputation-based 

PFIM algorithm to quickly acquire the frequent 

itemsets on massive data. The transaction table 

consists of two part: the large old table and the 
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relatively small new table. By the quasi-frequent 

itemsets pre-computed on the old table, PFIM can 

report the frequent itemsets on massive data 

efficiently. Three pruning rules are proposed in this 

paper to speed up the execution of PFIM. The 

incremental update strategy is presented to re-

construct the quasi-frequent itemsets quickly when 

merging the old table and the new table. The 

extensive experimental results show that PFIM has 

a significant performance advantage over the 

existing algorithms. 
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