
 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 313 

 

 

LOW DELAY 4-BIT BURST ERROR CORRECTION CODES 

WITH QUADRUPLE ADJACENT ERROR CORRECTION 
1
GADDAM RIZWANA, 

2
M.IMTHIAZ BASHA 

1
PG SCHOLAR, DEPT OF ECE(VLSIESD), GATES INSTUITE OFTECHNOLOGY,AP,INDIA 

2
ASSISTANT PROFESSOR, DEPT OF ECE, GATES INSTUITE OF TECHNOLOGY,AP,INDIA 

DEPT OF ECE, JNTUA, AP, INDIA 

 

ABSTRACT: The use of error-correction codes (ECCs) with advanced correction 

capability is a common system-level strategy to harden the memory against multiple 

bit upsets (MBUs). Therefore, the construction of ECCs with advanced error 

correction and low redundancy has become an important problem, especially for 

adjacent ECCs. Existing codes for mitigating MBUs mainly focus on the correction of 

up to 3-bit burst errors. As the technology scales and cell interval distance decrease, 

the number of affected bits can easily extend to more than 3 bit. The previous 

methods are therefore not enough to satisfy the reliability requirement of the 

applications in harsh environments. In this paper, a technique to extend 3-bit burst 

error-correction (BEC) codes with quadruple adjacent error correction (QAEC) is 

presented. First, the design rules are specified and then a searching algorithm is 

developed to find the codes that comply with those rules. The H matrices of the 3-bit 

BEC with QAEC obtained are presented. They do not require additional parity check 

bits compared with a 3-bit BEC code. By applying the new algorithm to previous 3-

bit BEC codes, the performance of 3-bit BEC is also remarkably improved. 

 

1. INTRODUCTION 

Error correction codes are commonly 

used to protect memories from so 

called Soft Errors, which change the 

logical value of memory cells without 

damaging the circuit. As technology 

scales, memory devices become larger 

and more powerful error correction 

codes are needed. To this end the use 

of more advanced codes has been 

recently proposed. These codes can 

correct a larger number of errors, but 

generally require complex decoders. 

To avoid a high decoding complexity, 

the use of one-step majority logic 

decodable codes was first proposed in 

for memory applications. One step 

majority logic decoding can be 

implemented serially with very simple 

circuitry but requires long decoding 

times.  In a memory this would 

increase the access time. Only few 

classes of codes can be decoded using 

OS-MLD. Among those are some DS-

LDPC codes, EG-LDPC codes and 

OLS codes.The use of OLS codes has 

gained renewed interest for 

interconnections, memories, and 

caches. This is due to their modularity 

such that the error correction 

capabilities can be easily adapted to 

the error rate or to the mode of 

operation. OLS codes typically require 

more parity bits than other codes to 

correct the same number of errors. 

However, their modularity and the 

simple and low delay decoding 

implementation (as OLS codes are OS-



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 314 

 

MLD), offset this disadvantage in 

many applications. An important issue 

is that the encoder and decoder circuits 

needed to use (ECCs) can also suffer 

errors. When an error affects the 

encoder, an incorrect word may be 

written into the memory. An error in 

the decoder can cause a correct word to 

be interpreted as erroneous or the other 

way around, an incorrect word to be 

interpreted as a correct word. 

A method was recently proposed in to 

accelerate a serial implementation of 

majority logic decoding of DS-LDPC 

codes. The idea behind the method is 

to use the first iterations of majority 

logic decoding to detect if the word 

being decoded contains errors. If there 

are no errors, then decoding can be 

stopped without completing the 

remaining iterations, therefore greatly 

reducing the decoding time. And 

majority logic decoding can be 

implemented serially with simple 

hardware but requires a large decoding 

time. For memory applications this 

increases the memory access time. The 

method detects whether a word has 

errors in the first iterations of majority 

logic decoding, and when there are no 

errors the decoding ends without 

completing the rest of the iterations. 

Since most words in a memory will be 

error-free, the average decoding time is 

greatly reduced.  

2. Existing Method 

As technology scales, memory devices 

become larger and more powerful error 

correction codes are needed. To this 

end, the use of more advanced codes 

has been recently proposed. These 

codes can correct a larger number of 

errors, but generally require complex 

decoders. To avoid a high decoding 

complexity, the use of one step 

majority logic decodable codes was 

first proposed in for memory 

applications. Further work on this topic 

was then presented in. One step 

majority logic decoding can be 

implemented serially with very simple 

circuitry, but requires long decoding 

times. In a memory, this would 

increase the access time which is an 

important system parameter. Only a 

few classes of codes can be decoded 

using one step majority logic decoding. 

Among those are some Euclidean 

geometry low density parity check 

(EG-LDPC) codes which were used in, 

and difference set low density parity 

check (DS-LDPC) codes.  

This method was proposed to 

accelerate the majority logic decoding 

of difference set low density parity 

check codes. this is useful as majority 

logic decoding can be implemented 

serially with simple hardware but 

requires a large decoding time. for 

memory applications, this increases the 

memory access time. the method 

detects whether a word has errors in 

the first iterations of majority logic 

decoding, and when there are no errors 

the decoding ends without completing 

the rest of the iterations. since most 

words in a memory will be error-free, 

the average decoding time is greatly 

reduced. in this brief, we study the 

application of a similar technique to a 

class of euclidean geometry low 

density parity check (EG-LDPC) codes 

that are onestep majority logic 

decodable. the results obtained show 

that the method is also effective for 

EG-LDPC codes. extensive simulation 



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 315 

 

results are given to accurately estimate 

the probability of error detection for 

different code sizes and numbers of 

errors. 

 A method was recently proposed in to 

accelerate a serial implementation of 

majority logic decoding of DS-LDPC 

codes. The idea behind the method is 

to use the first iterations of majority 

logic decoding to detect if the word 

being decoded contains errors. If there 

are no errors, then decoding can be 

stopped without completing the 

remaining iterations, therefore greatly 

reducing the decoding time. For a code 

with block length N, majority logic 

decoding (when implemented serially) 

requires N iterations, so that as the 

code size grows, so does the decoding 

time. In the proposed approach, only 

the first three iterations are used to 

detect errors, thereby achieving a large 

speed increase when N is large. In it 

was shown that for DS-LDPC codes, 

all error combinations of up to five 

errors can be detected in the first three 

iterations. Also, errors affecting more 

than five bits were detected with a 

probability very close to one. The 

probability of undetected errors was 

also found to decrease as the code 

block length increased. For a billion 

error patterns only a few errors (or 

sometimes none) were undetected. 

This may be sufficient for some 

applications. Another advantage of the 

proposed method is that it requires 

very little additional circuitry as the 

decoding circuitry is also used for error 

detection. For example, it was shown 

in that the additional area required to 

implement the scheme was only 

around 1% for large word sizes. 

One step MLD can be implemented 

serially using the scheme in Fig 3.1 

which corresponds to the decoder for 

the EG LDPC code with N=15. First 

the data block is loaded into the 

registers. Then the check equations are 

computed and if a majority of them has 

a value of one, the last bit is inverted. 

Then all bits are cyclically shifted. 

This set of operations constitutes a 

single iteration: after N iterations, the 

bits are in the same position in which 

they were loaded. In the process, each 

bit may be corrected only once. As can 

be seen, the decoding circuitry is 

simple, but it requires a long decoding 

time if Nis large. 

 
Fig. 1 Serial one-step majority logic 

decoder for the EG-LPDC code 

 

The check equations must have the 

following properties 

1. All equations include the 

variable whose value is stored 

in the last register (the one 

marked as C14).  

2. The rest of the registers are 

included in at most one of the 

check equations. 

     If errors can be detected in the 

first few iterations of MLD, then 

whenever no errors are detected in 

those iterations, the decoding can be 

stopped without completing the rest of 



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 316 

 

the iterations. In the first iteration, 

errors will be detected when at least 

one of the check equations is affected 

by an odd number of bits in error. In 

the second iteration, as bits are 

cyclically shifted by one position, 

errors will affect other equations such 

that some errors undetected in the first 

iteration will be detected. As iterations 

advance, all detectable errors will 

eventually be detected. 

     In it was shown that for DS-

LDPC codes most errors can be 

detected in the first three iterations of 

MLD. Based on simulation results and 

on a theoretical proof for the case of 

two errors, the following hypothesis 

was made. “Given a word read from a 

memory protected with DS-LDPC 

codes, and affected by up to five bit-

flips, all errors can be detected in only 

three decoding cycles”. Then the 

proposed technique was implemented 

in VHDL and synthesized, showing 

that for codes with large block sizes 

the overhead is low. This is because 

the existing majority logic decoding 

circuitry is reused to perform error 

detection and only some extra control 

logic is needed. 

 

3. IMPLEMENTATION OF 

PROPOSED 

ARCHITECTURE 

OLS codes are based on the concept of 

Latin squares. A Latin square of size m 

is an m × m matrix that has 

permutations of the digits 0, 1,…, m − 

1 in both its rows and columns. Two 

Latin squares are orthogonal if when 

they are superimposed every ordered 

pair of elements appears only once. 

OLS codes are derived from OLS. 

These codes have k = m2 data bits and 

2tm check bits, where t is the number 

of errors that the code can correct. For 

a double error correction code t = 2, 

and, therefore, 4m check bits, are used. 

As mentioned in the introduction, one 

advantage of OLS codes is that their 

construction is modular. This means 

that to obtain a code that can correct t 

+1 errors, simply 2m check bits are 

added to the code that can correct t 

errors. This can be useful to implement 

adaptive error correction schemes. The 

modular property also enables the 

selection of the error correction 

capability for a given word size. As 

mentioned before, OLS codes can be 

decoded using OS-MLD as each data 

bit participates in exactly 2t check bits 

and each other bit participates in at 

most one of those check bits. This 

enables a simple correction when the 

number of bits in error is t or less. The 

2t check bits are recomputed and a 

majority vote is taken. If a value of one 

is obtained, the bit is in error and must 

be corrected. Otherwise the bit is 

correct. As long as the number of 

errors is t or less, the remaining t −1 

errors can, in the worst case, affect t −1 

check bits.  

 
Fig.2. Parity check matrix for OLS 

code with k = 16 and t = 1. 

 (1) Therefore, still a majority of t + 1 

triggers the correction of an erroneous 

bit. In any case, the decoding starts by 

recomputing the parity check bits and 



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 317 

 

checking against the stored parity 

check bits. The parity check matrix H 

for OLS codes is constructed from the 

OLS. As an example, the matrix for a 

code with k = 16 and 8 check bits that 

can correct single errors is shown in 

Fig. 1.  The modular construction of 

OLS codes this matrix forms part of 

the H matrix for codes that can correct 

more errors. For example, to obtain a 

code that can correct two errors, eight 

additional rows are added to the H 

matrix. For an arbitrary value of k = 

m2, the H matrix for a SEC OLS code 

is constructed as follows: 

                                                                       
where I2m is the identity matrix of size 

2m and M1, M2 are matrices of size m 

× m2. The matrix M1 has m ones in 

each row. For the r th row, the ones are 

at positions (r − 1) × m + 1,(r − 1) × m 

+ 2,…(r − 1) × m + m − 1, (r − 1) × m 

+ m. The matrix M2 is constructed as 

follows: 

M2 = [Im Im . . . Im].                                                                                              

(2) 

For m = 4, the matrices M1 and M2 can 

be clearly observed in Fig. 1. The 

encoding matrix G is just the H matrix 

on which the check bits are removed 

                                                                      
. (3) 

In summary, the encoder takes k = m2 

data bits (di ) and computes 2tm parity 

check bits (ci ) using a matrix G, which 

is derived from Latin squares and has 

the following properties. 

1) Each data bit participates exactly in 

2t parity checks. 

2) A pair of data bits participates (both 

bits) in at most one of the parity 

checks. 

These properties are used in the next 

section to discuss the proposed 

technique. 

 

4.Proposed Concurrent Error 

Detection Technique 

Based on the structure of the 

parity check matrix, the check bits are 

calculated by the corresponding data 

bits. The new encoded codeword, the 

combination of check bits and data bits 

is stored in the memory. When the 

particles hit the memory resulting in 

MBUs, the contents of affected 

memory cells are flipped. Here, to 

elaborate on the correction ability of 

QAEC codes, quadruple adjacent bits 

are flipped on D2, D3, D4, and D5. In 

the decoding process, the syndrome is 

calculated using the stored check bits 

and data bits and the structure of the 

parity check matrix. Through the 

corresponding relationship between the 

syndrome and the XOR result of the 

columns mentioned in Section II, the 

flipped bits can be located. With the 

flipped bits inverted, the errors from 

the storage stage in the memory are 

effectively corrected. This is the whole 

procedure of encoding and decoding 

for the proposed QAEC codes 



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 318 

 

 

Fig  3 Implementation Flow 

5.RESULTS  ANALYSIS 

 

Fig  4  Simulation Result for Proposed 

Method 

Paramete

r 

Existing 

Method  

Proposed 

Method 

Delay 4.470ns 2.279ns 

Maximu

m 

Frequenc

y 

223.694MH

Z 

438.789MH

Z 

Table 1 Comparision Table between 

existed and proposed method 

Table 1 shows the  Maximum 

Frequency and delay comparison of the 

proposed method  with other methods. 

It is also shown from the table that the 

proposed designed is better in terms of 

Frequency and delay. 

6. CONCLUSION AND FUTURE 

SCOPE 

 CED technique for OLS codes 

encoders and syndrome computation 

was proposed. The proposed technique 

took advantage of the properties of 

OLS codes to design a parity 

prediction scheme that could be 

efficiently implemented and detects all 

errors that affect a single circuit node. 



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 319 

 

The technique was evaluated for 

different word sizes, which showed 

that for large words the overhead is 

small. This is interesting as large word 

sizes are used, for example, in caches 

for which OLS codes have been 

recently proposed. 

 The proposed error checking 

scheme required a significant delay; 

however, its impact on access time 

could be minimized. This was 

achieved by performing the checking 

in parallel with the writing of the data 

in the case of the encoder and in 

parallel with the majority voting and 

error correction in the case of the 

decoder. In a general case, the 

proposed scheme required a much 

larger overhead as most ECCs did not 

have the properties of OLS codes. This 

limited the applicability of the 

proposed CED scheme to OLS codes. 

The availability of low overhead error 

detection techniques for the encoder 

and syndrome computation is an 

additional reason to consider the use of 

OLS codes in high-speed memories 

and caches. 

References 

[1] R. C. Baumann, “Radiation-

induced soft errors in advanced 

semiconductor technologies,” IEEE 

Trans. Device Mater. Reliab., vol. 5, 

no. 3, pp. 301–316, Sep. 2005. 

 

[2] M. A. Bajura, Y. Boulghassoul, R. 

Naseer, S. DasGupta, A. F.Witulski, J. 

Sondeen, S. D. Stansberry, J. Draper, 

L. W. Massengill, and J. N. 

Damoulakis, “Models and algorithmic 

limits for an ECC-based approach to 

hardening sub-100-nm SRAMs,” IEEE 

Trans. Nucl. Sci., vol. 54, no. 4, pp. 

935–945, Aug. 2007. 

 

[3] R. Naseer and J. Draper, “DEC 

ECC design to improve memory 

reliability in sub-100 nm 

technologies,” Proc. IEEE ICECS, pp. 

586–589, 2008. 

 

[4] S. Ghosh and P. D. Lincoln, 

“Dynamic low-density parity check 

codes for fault tolerant nano-scale 

memory,” presented at the Foundations 

Nanosci. (FNANO), Snowbird, Utah, 

2007. 

 

[5] S. Ghosh and P. D. Lincoln, “Low-

density parity check codes for error 

correction in nanoscale memory,” SRI 

Computer Science Lab., Menlo Park, 

CA, Tech. Rep. CSL-0703, 2007. 

 

[6] H. Naeimi and A. DeHon, “Fault 

secure encoder and decoder for 

memory applications,” in Proc. IEEE 

Int. Symp. Defect Fault Toler. VLSI 

Syst., 2007, pp. 409–417. 

 

[7] B. Vasic and S. K. Chilappagari, 

“An information theoretical framework 

for analysis and design of nanoscale 

fault-tolerant memories based on low-

density parity-check codes,” IEEE 

Trans. Circuits Syst. I, Reg. Papers, 

vol. 54, no. 11, pp. 2438–2446, Nov. 

2007. 

 

[8] H. Naeimi and A. DeHon, “Fault 

secure encoder and decoder for 

nanomemory applications,” IEEE 

Trans. Very Large Scale Integr. (VLSI) 

Syst., vol. 17, no. 4, pp. 473–486, Apr. 

2009. 



 

Volume 03, Issue 09, Oct 2019                           ISSN 2581 – 4575 Page 320 

 

 

[9] S. Lin and D. J. Costello, Error 

Control Coding, 2nd ed. Englewood 

Cliffs, NJ: Prentice-Hall, 2004. 

 

[10] S. Liu, P. Reviriego, and J. 

Maestro, “Efficient majority logic fault 

detection with difference-set codes for 

memory applications,” IEEE Trans. 

Very Large Scale Integr. (VLSI) Syst., 

vol. 20, no. 1, pp. 148–156, Jan. 2012. 

 

[11] H. Tang, J. Xu, S. Lin, and K. A. 

S. Abdel-Ghaffar, “Codes on finite 

geometries,” IEEE Trans. Inf. Theory, 

vol. 51, no. 2, pp. 572–596, Feb. 2005. 

 


